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One of the major challenges today is assessing the suitability of PV (photovoltaic) systems’ installations
on buildings’ roofs regarding the received solar irradiance. The availability of aerial laser-scanning,
namely LiDAR (Light Detection And Ranging), means that assessment can be performed automatically
over large-scale urban areas in high accuracy by considering surfaces’ topographies, long-term direct and
diffuse irradiance measurements, and influences of shadowing. The solar potential metric was intro-
duced for this purpose, however it fails to provide any insights into the production of electrical energy by
a specific PV system. Hence, the PV potential metric can be used that integrates received instantaneous
irradiance which is then multiplied by the PV system’s efficiency characteristics. Many existing PV po-
tential metrics over LiDAR data consider the PV modules’ efficiencies to be constant, when in reality they
are nonlinear. This paper presents a novel PV potential estimation over LiDAR data, where the PV
modules’ and solar inverter’s nonlinear efficiency characteristics are approximated by modelled func-
tions. The estimated electrical energy production from buildings’ roofs within an urban area was
extensively analysed by comparing the constant and nonlinear efficiency characteristics of different PV
module types and solar inverters. The obtained results were confirmed through measurements per-
formed on an existing PV system.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Solar energy is one of the more promising and sustainable en-
ergy sources due to its good accessibility. Over recent years, the
technology that uses the PV (photovoltaic) effect for the production
of electrical power has progressed immensely [1]. Various pa-
rameters have to be considered when installing grid-connected PV
systems [2,3], as some buildings’ roofs are more suitable than
others, regarding the received solar irradiance. This presents an
important issue in urban planning and the environmental health of
modern sustainable cities. The solar potential (i.e. average daily or
total received irradiance on a given surface throughout the year) is
one of the more reliable metrics for finding the most suitable
surfaces for PV systems’ installations. Some of the more important
parameters to be considered in solar potential estimation are:
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geographic location, surface topography, influence of atmospheric
attenuation by molecular absorption and Rayleigh or Mie scat-
tering, and shadowing effects from the surroundings. The estima-
tion of solar irradiance (i.e. irradiation incident on surface)
provides a direct solution for calculating the solar potential. Ac-
curate methods split the global irradiance into direct and diffuse
irradiances, which is possible with solar radiation modelling [4e
24], or by using long-term shortwave global and diffuse irradi-
ance measurements (e.g. with a pyranometer) near the considered
location. The diffuse irradiance is the consequence of various per-
turbations of the direct irradiance (e.g. atmospheric attenuation,
cloud cover and air pollution), and unlike direct irradiance it also
irradiates any shadowed areas that are only partly obstructed from
their surroundings. The solar irradiance models based on
measured data are mainly differentiated by whether the diffuse
irradiance is estimated as isotropic or more accurately as aniso-
tropic. Demain et al. [17] compared the well-established models,
and concluded that Bugler’s [4], Willmot’s [5], and Perez’s [6]
model performed best under clear sky, partially-cloudy sky, and
overcast conditions, respectively. Irradiance can also be estimated
from newer satellites’ measurements of irradiance spectra
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[7,12,23]. Although on-site measurements are in higher resolution,
the satellite spectra have a distinct advantage in a few cases, e.g.
observing mountainous terrain, where few on-site irradiance-
monitoring stations exist and their interpolations yield less accu-
rate estimations. Alternatively a less accurate irradiance can be
derived from other geophysical variables [24] such as temperature,
rainfall, and sunshine duration.

LiDAR (Light Detection And Ranging) is an active remote sensing
technology [25] that captures surfaces topographies in high detail,
which can be used for accurate automatic solar irradiance estima-
tions over large-scale urban areas [8]. The scanning is done by
emitting laser pulses between ca. 10 nme250 nmwavelengths. The
result of such scanning is an unstructured 3D point cloud consisting
of millions of unclassified points. Over the past few years various
methods have been developed for estimating solar potential by
considering remote sensing data [26e47], where most originate
from ALS (Airborne Laser Scanning). Most commonly, the classified
LiDAR point cloud is geo-referenced (e.g. with a Global Positioning
System), and preprocessed by being either inserted into a 2.5D
grid structure [27,33,36,40,44], or alternatively 3D planes of
the buildings’ roofs are reconstructed from the point cloud
[28,29,31,35,42,45]. Therefore, topological relations are established
in order to estimate topographical features such as slope (i.e.
inclination) and aspect (i.e. orientation) angles, for accurate calcu-
lation of the roofs’ solar irradiances. Moreover, with the knowledge
of surfaces’ characteristics, more accurate shadowing can be per-
formed that significantly reduces the amount of direct irradiance.
The calculated solar potential provides a good estimate for the
amount of average daily irradiance a given surface receives. How-
ever, it does not precisely inform the investors about the predicted
production of electrical energy over a given time. In order to solve
this problem the efficiency characteristics have to be considered
regarding a PVM (photovoltaic module) and the solar inverter
connecting PVMs to an electrical grid. One of the solutions is the
PV potential metric, which has been a developing topic over
the past few years when considering remote sensing data
[30,31,41,42,45,46]. PV potential is represented as the integration of
reduced instantaneous solar irradiances by considering the
nonlinear efficiency characteristics of a given PVM and the solar
inverter over a longer period of time. The nonlinearity is inherent
from the properties of semiconducting materials that are integral
parts of PVMs, and the properties of the MPPT (Maximum Power
Point Tracking) technique that is utilized by solar inverters. Most
previous works regarding PV potential estimation over urban areas
considered these efficiency characteristics as constants, due to lack
of measurements for more accurate efficiency modelling. This has
led to less accurate estimations, especially in areas with continental
climate due to seasonal changes. The constant efficiency charac-
teristics are commonly taken as the average efficiency or a peak
efficiency at 1000 Wm�2 global irradiance [48], standard air mass
AM ¼ 1.5 and temperature T ¼ 25 �C. Of course, such efficiency
provides only an impression of the nominal power (i.e. overall
quality) for a particular PV module or a PV system. However, using
constant efficiency characteristic will yield less accurate approxi-
mation of the electricity generation, if an accurate location and
time-dependent (i.e. spatio-temporal) production of electrical en-
ergy is to be estimated that is an integral part of the PV potential
metric. Such detailed analysis was already performed on local scale
PV systems [49,50], where various surface characteristics were
considered. When considering large-scale data, Jakubiec and
Reinhart [45] considered first-order approximation in hourly panel
efficiency based on ambient air temperature and point irradiation.
Strzalka et al. [42] applied a one-diode PV cell model for consid-
ering PVM properties. Additionally they considered the consump-
tion ratio on an hourly basis.
This paper presents a novel spatio-temporal PV potential esti-
mation of buildings’ roofs that were captured using aerial LiDAR
scanning, by considering the nonlinear efficiency characteristics of
different types of PVMs, including the solar inverter, and long-term
solar irradiance measurements. The nonlinear efficiency charac-
teristics are approximated with irradiance-dependent functions
that are modelled from time-series data of irradiance measure-
ments and electrical power. The PV system’s instantaneous pro-
duction of electrical power is estimated by filtering the calculated
instantaneous solar irradiance with modelled functions approxi-
mating nonlinear efficiency characteristics. Accurate solar irradi-
ance estimation is based on [44] that considers the spatial
topographic properties, time-series data of long-term on-site direct
and diffuse irradiances that were measured using a pyranometer,
and the influence from spatio-temporal multiresolutional shad-
owing within an urban area from the surrounding terrain and
vegetation. The presented method is applicable to any urban area
for which LiDAR data and preferably long-term irradiance mea-
surements are available. Furthermore, the method contributes to
long-term global PV system development by finding suitable sur-
faces for PV systems’ installation, and forecasting electricity pro-
duction from different PVmodules. The increase of suitably-located
PV systems would reduce potential emissions from other energy
sources, and assure the return on investments. An extensive com-
parison between the PVMs’ nonlinear and constant efficiency
characteristics is performed throughout the entire considered ur-
ban area. Moreover, the accuracy of the proposed method is
compared with the measurements done by the local power plant
located within the scanned urban area.

This paper is structured into four sections. The 2nd section
briefly describes previous work on solar irradiance estimation for
buildings’ roofs using LiDAR data, and presents the newly proposed
PV potential, which considers the nonlinear characteristics of the
PVM and the solar inverter by nonlinear approximation functions
determined bymeasurements of irradiance and produced electrical
power. The analysis for the accuracy of the proposed method, and
the comparison between PVMs’ constant and nonlinear efficiency
characteristics is presented in the Section 3. The Section 4 con-
cludes the paper.

2. Method for estimating photovoltaic potential

The solar potential can generally be defined as the potential
suitability of a given surface for a PV system’s installation, evaluated
by the total [28] or average-daily [44] estimated irradiance the
given surface receives throughout the year. In this paper the dis-
cussed surface is the rooftop. By going a step further and consid-
ering the electrical energy generation by a PV system on a given
rooftop, the PV potential can be defined as ametric that provides an
accurate prediction of the estimated electrical energy production
when using the given PV system throughout the year [30]. Clearly,
both solar and PV potentials depend on the underlying irradiance
model that is being used. Although one could simply multiply the
calculated solar potential by the constant efficiency characteristics,
this would only present a rough approximation of the PV potential.
Therefore, this paper proposes a new PV potential estimation
method over LiDAR data that considers the nonlinear efficiency
characteristics of a given PVM type and the solar inverter.

When considering nonlinear efficiency characteristics regarding
PV potential, the MPPT (Maximum Power Point Tracking) can be
described as a technique of finding such a load connected to the
output of a PV cell, PVM or PV array, at which the output power
given by the product of output current and voltage, reaches its
maximumwhen considering the given temperature and irradiance
[51,52]. The continuously changing load is normally a power
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electronic device that performs the conditioning of the PV solar cell,
module or array, and can be considered as a part of the inverter.

The next two subsections provide a brief overview of the solar
irradiance model used in previous work for solar potential esti-
mation over LiDAR data [44]. Subsection 2.3 presents the new PV
potential estimation method, whilst Subsection 2.4 provides
confirmation of the method for horizontal surfaces.

2.1. Preparation of LiDAR data

In order to calculate accurate irradiances of different surfaces,
their geometrical properties have to be considered, such as incli-
nation and orientation, as well the spatio-temporal self-shadowing
and shadowing from the surroundings. LiDAR is one of the newer
available remote sensing technologies that describe surfaces in
great detail. Therefore, it is used in this work for estimating solar
irradiance and the PV potential of buildings’ roofs more accurately.
At first the classified geo-referenced LiDAR point cloud (see Fig. 1a)
is inserted into a regular grid structure comprising of equal-sized
cells (see Fig. 1b). The number of points n that fall into a given
cell C depends on the point cloud’s density and the cell’s resolution
(e.g. 1 m2 size). The i-th cell’s Ci height is determined as
Ciz ¼ maxðp1z; p2z; ::; pnzÞ;c pj˛Ci, where pj is the height of the j-th
point located in the given Ci. Each cell is classified based on points’
classes located within the cell. The constructed grid’s spatial data-
structure provides topology of buildings’ roofs, hence topographical
features can be extracted, as well as shadowing being performed.
Terrain, buildings, and vegetation classes are considered, where the
classification of LiDAR data is done by using any state of the art
classification methods [28,53,54].

Afterwards, the per-cell instantaneous solar irradiance is esti-
mated and serves as the input for estimating the instantaneous
production of electrical power, by considering nonlinear functions
approximating the efficiency characteristics of different PVMs and a
solar inverter.

2.2. Solar irradiance estimation

The slope bCi
˛½0;p=2� and aspect gCi

˛½0;2p� angles are extrac-
ted for the i-th cell before the solar irradiance is estimated. The
cell’s normal vector NCi

is calculated by using the best-fitting plane
algorithm over the points within a given cell and its non-empty
neighbouring cells’ points. bCi

is the angle between NCi
and the

horizontal plane, whilst gCi
is the angle between the projected NCi

on the horizontal plane and the direction towards geographical
north. The i-th cell’s terrestrial spatio-temporal instantaneous solar
irradiance I is calculated by considering the diffuse Id [Wm�2] and
direct Ib [Wm�2] irradiances from the measurements:

ICi
ðtÞ ¼ IbðtÞRbCi

�
1� SCi

ðtÞ�þ IdðtÞRdCi

h
Wm�2

i
; (1)
Fig. 1. Visualization of a) classified LiDAR point cloud (terrain, buildings, and vegetation are
cloud. Vegetation in b) is visualized as point cloud for visual clarity. (For interpretation of th
this article.)
where t denotes an instance of time. RbCi ¼ cosðQCi
Þ=cosðQCiz

Þ and
RdCi

¼ cos2ðbCi
=2Þ are the correction factors [55] for Ib and Id,

respectively. bCi
and gCi

are important when calculating
fQCi

;QCiz
g˛½0;1�. QCi

is the cell’s angle of incidence, whilst QCiz
is

the angle of incidence for the horizontal surface (i.e. zenith angle).
SCi

ðtÞ˛½0;1� is the shadowing coefficient that is calculated by using
the spatio-temporal multiresolution-based shadowing method
introduced in Ref. [44], where SCi

ðtÞ ¼ 1 if a given cell is fully
shadowed. The used shadowing method additionally considers
shadowing from a low-resolution DTM (digital terrain model)
representing large-scale surroundings (e.g. mountains and hills), in
addition to the high-resolution LiDAR data. A given cell b¼ [bx,by,bz]
is shadowed by cell a ¼ [ax,ay,az] if bz < az � D(a, b)m, where D(a, b)
denotes the Euclidian distance between a and b, whilst m ¼ cz/D(cx,
cy) is the unit change of height, considering the sunbeam’s direc-
tional vector c ¼ [cx,cy,cz] ¼ [Sun_posx � ax, Sun_posy � ay,
Sun_posz � az] passing between a and b. Sun’s position for a given
location and instance of time is calculated by using the highly
precise Solar Positional Algorithm [56] that has an uncertainty of
w0.0003� when calculating solar azimuth and altitude angles.
Additionally, spatio-temporal transparent shadowing from the
vegetation is considered by using LAI (Leaf Area Index) [57], which
is variable throughout the year. Light transmission through the
vegetation canopies is used to estimate the approximate shadow-
ing coefficient SCi

ðtÞ ¼ 1� e�K LAI [44]. K ˛ [0, 1] is the extinction
coefficient that depends on solar zenith angle and distribution of
the leaves’ inclination angles [58]. LAI ˛ [0, N) is the ratio of the
canopy’s leaves divided by the area of the projected canopy on a
horizontal surface. Note that reflected irradiance is excluded as the
materials’ reflective properties cannot be derived from LiDAR data.

Fig. 2a shows the time-series data of direct and diffuse short-
wave irradiances that were obtained by using a pyranometer on
horizontal surface at Maribor Edvard Rusjan Airport (46� 28.750 N,
15� 41.160 E) in Slovenia. The averaged series of these measure-
ments over 30 min intervals in each day throughout ten years (see
Fig. 2b) can serve as the base input in Eq. (1), where the time-
dependent Ib and Id are required. The diffuse irradiance can also
be empirically modelled by using a more advanced irradiance
model for specific sky conditions (see Demain et al. [17]).
2.3. Estimation of produced electrical energy and the PV potential

This paper considers a single PVM equipped with a micro solar
inverter to be placed on each cell Ci within the constructed grid
data-structure. The irradiance-dependent efficiency characteristics
function hXCi

ðICi
ðtÞÞ for a given PVM type X over the grid’s cell Ci, is

approximated as [59]:

hXCi

�
ICi
ðtÞ� ¼ p1

�
p2

�
ICi
ðtÞ

1000

�
þ
�
ICi
ðtÞ

1000

�p3
�
ð2þ p4 þ p5Þ; (2)
coloured in brown, red, and green respectively), and b) constructed grid from the point
e references to colour in this figure legend, the reader is referred to the web version of



Fig. 2. a) Measured direct and diffuse irradiances by using a pyranometer near Maribor, Slovenia; b) Averaged annual measurements from a) by using a 30 min time-step.
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where p1, p2, p3, p4, and p5 are the parameters of the efficiency
characteristic approximation functions that have to be determined
separately for each type of PVM. This form of efficiency character-
istics functionwas proposed by Durisch et al. [59], where the PVM’s
standard temperature of T ¼ 25 �C and air mass AM ¼ 1.5, but with
varying received time-dependent irradiance ICi

ðtÞ, are considered.
Determination of the nonlinear approximation function’s parame-
ters can be achieved by using any optimisation method for non-
linear least square fitting (e.g. linear regression methods for curve
fitting). In this paper, the nonlinear efficiency characteristics of the
three better known PVMs are considered based on the following
semiconductive materials: A-Si (amorphous silicon), P-Si (poly-
crystalline silicon), and M-Si (monocrystalline silicon). Therefore,
the following set of PVMs X ¼ {A-Si, P-Si, M-Si} is considered
throughout the rest of the paper. Using time-series data of mea-
surements for each PVM’s input irradiance and produced electrical
power at the University of Maribor in Slovenia (46� 22.370 N, 15�

5.910 E), the functions’ parameters were modelled as shown in
Table 1. The considered PV modules manufacturers’ original data is
shown in Appendix A.

Fig. 3a shows themeasured data and their approximations using
nonlinear functions, by considering the parameters from Table 1. As
can be observed in Fig. 3a, the overall efficiency characteristic of M-
Si is better than A-Si and P-Si. The time-dependent generated
electrical power for a given PV module at cell Ci is calculated as:

MX
Ci

�
ICi
ðtÞ� ¼ hXCi

�
ICi
ðtÞ�ICi

ðtÞACi
½W�; (3)

where ACi
½m2� denotes the area of a given cell Ci, where the cell’s

inclination bi is considered (i.e. more inclined surfaces in 2.5D grid
have higher areas). The produced electrical powerMX

Ci
ðICi

ðtÞÞ is then
transferred into PV system’s AC power, hence the efficiency char-
acteristic hinvCi

of the per-cell micro solar inverter is considered:

PXCi

�
ICi
ðtÞ� ¼ hinvCi

�
MX

Ci

�
ICi
ðtÞ��MX

Ci

�
ICi
ðtÞ�½W�: (4)

The inverter’s efficiency characteristic hinvCi
ðMX

Ci
ðICi

ðtÞÞÞ was
approximated with an exponential function where its parameters
Table 1
Parameters of the nonlinear functions approximating efficiency characteristics for
different types of PVMs.

PVM type (X) p1 p2 p3 p4 p5

A-Si 5.5649 �0.7576 0.6601 �3.2976 6.6581
P-Si 4.9009 �0.1770 0.0794 0.0244 1.1248
M-Si 2.3243 �0.2803 0.1783 1.4650 6.2331
were fitted with the aim of reaching the best agreement with the
measured efficiency (see Fig. 3b):

hinvCi

�
MX

Ci

�
ICi
ðtÞ�� ¼ �0:2871e�0:0366 MX

Ci
ðICi ðtÞÞ

� 0:6556e�0:1575 MX
Ci
ðICi ðtÞÞ þ 0:9427: (5)

It should be pointed out that hXCi
ðICi

ðtÞÞ and hinvCi
ðMX

Ci
ðICi

ðtÞÞÞwere
determined by considering MPPT. Although a macro inverter could
be used for handling multiple PVMs, the method would be gener-
ally less accurate. For example, if multiple PVMs are connected to a
macro-inverter, and some PVMs are shadowed, then the entire
arrays of PVMs that are connected in series could be blocked. In
order to solve this, substantial spatial optimisations would be
required when considering various geometrical properties for
different roofs.

The overall nonlinear efficiency characteristics of a PV systemare
shown in Fig. 3c, where PVMs efficiency characteristics are multi-
plied by hinv. The efficiency degradation by PV modules’ ageing is
additionally included, by considering the analytical review from
Jordan et al. [60]. They calculated the PV module’s median degra-
dation rates [%/year] for A-Si, P-Si, and M-Si as 0.87%, 0.64%, and
0.36%, respectively. When considering the PV systemwith inverter,
theycalculated the degradation rate for A-Si, P-Si, andM-Si as 0.95%,
0.59%, and 0.23%, respectively (see Fig. 3c). By integrating the
instantaneous production of electrical power within the time in-
terval [t1, t2], the produced electrical energy is denoted as:

EXCi
ðt1; t2Þ ¼

Zt2
t1

hinvCi

�
MX

Ci

�
ICi
ðtÞ��MX

Ci

�
ICi
ðtÞ�dt½Wh�: (6)

The proposed per-cell PV potential is then calculated as the
average daily produced electrical energy EXdnCi

ðsrn; ssnÞ throughout
the year:

Ed
X
Ci

¼ 1
365

X365
n¼1

EXdnCi
ðsrn; ssnÞ

h
Whm�2

i
; (7)

where srn and ssn denote the sunrise and sunset times for the n-th
day in the year. Although the presented nonlinear efficiency char-
acteristics functions were modelled based on the power plant
measurements, they can be applied for PV potential modelling over
any location, for which LiDAR data is available.

2.4. Confirmation of the proposed method for horizontal surfaces

Firstly, the impact of applied efficiency characteristics on the
estimated electrical energy production of PVMs placed on a



Fig. 3. Nonlinear functions approximating a) the efficiency characteristics of different PVMs, b) a micro solar inverter, c) the PV system’s efficiency characteristics, by also
considering influence from aging for a duration of 10 years. The dots represent the measured efficiency from hourly irradiances for each material and the solar inverter, throughout
the year, whilst the approximation functions are represented by lines.

Fig. 4. a) Daily produced electrical energy EXd on a horizontal surface throughout the year with 30 min interval; b) cumulative Ex throughout the year; c) cumulative difference in
energy production Ex between constant and nonlinear efficiency characteristics.



Fig. 5. a) Hourly produced power Px, during the spring equinox, summer solstice, autumn equinox, and winter solstice; b) cumulative differences in energy production Ex between
the PVMs’ constant and nonlinear efficiency characteristics throughout the day.
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horizontal surface is extensively analysed, in order to confirm the
expected discrepancies between constant and nonlinear efficiency
characteristics, before applying the method over LiDAR data. The
daily produced energy EXd for a horizontal surface is shown in
Fig. 4a, by considering constant and nonlinear efficiency charac-
teristics for different types of PVMs and the micro solar inverter.
The input irradiance measurements on a horizontal surface that
are considered in this analysis are shown in Fig. 2b. The



Fig. 6. Visualization of the constructed grid of the considered test site that was ob-
tained with aerial LiDAR scanning. The discussed power plant and the segmented
building that were used for further analysis in this section, are marked with yellow
rectangles. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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differences between the PVMs constant and nonlinear efficiency
characteristics are clearly visible. The PVMs’ constant efficiency
characteristics are defined as hA�SiC

Ci
¼ 6:7%, hP�SiC

Ci
¼ 13%, and

hM�SiC
Ci

¼ 15:1% for A-Si, P-Si, and M-Si, respectively, where the
superscript C denotes constant efficiencies. These are calculated as
the averages from the functions approximating the nonlinear ef-
ficiency characteristics (see Fig. 3a), where the input global irra-
diance is considered within the [0, 1200] Wm�2 range. Similarly
the micro inverter’s constant efficiency characteristic is calculated
as hinv

C

Ci
¼ 89:6%. Cumulative energy production Ex throughout

the year is shown in Fig. 4b, whilst in Fig. 4c the cumulative dif-
ferences in energy production Ex can be seen between constant
Fig. 7. a) The visualization of FEECS power plant within considered LiDAR data, and the inver
power plant with estimated production of electrical power for four extreme days; c) Photo
and nonlinear efficiency characteristics. For horizontal surfaces,
the nonlinear efficiency characteristic results in a greater cumu-
lative production of electrical power in the cases of P-Si and M-Si
(see Fig. 4b, c).

The largest differences between nonlinear and constant effi-
ciency characteristics can be seen during the summer for all three
considered PVM types, where an underestimation occurs using the
constant efficiency. In contrast, during the winter an over-
estimation occurs when using the constant efficiency. This is a
consequence of using the average value from nonlinear efficiencies
for calculating the constant efficiencies. More detailed analysis can
be seen in Fig. 5, where a comparison has been done for four
example ‘extreme’ days (i.e. the beginning of each season) of the
year, since the given location has continental climate. The cumu-
lative differences in Ex between constant and nonlinear efficiency
characteristics are fairly similar during the autumn and spring (see
Fig. 5b). During the summer the cumulative difference in produced
energy is greater, where an underestimation is achieved when
considering constant efficiency. This is caused due to longer day-
time, as nonlinear efficiencies are longer relatively close to their
peak value. As previously observed, during the winter, a higher
energy production is estimated using the constant efficiency
characteristics (i.e. overestimation), which is a consequence of low
irradiance due to increased overcast and shorter daytimes. Hence,
during the winter the nonlinear efficiency characteristics rarely
reach the average efficiency.

Moreover, when considering the A-SiC, a more significant
overestimation exists during the winter as opposed to other sea-
sons of the year. This is because A-Si has generally lower efficiency
at lower irradiances than the other two considered PVMs, which
can be seen in the lower slope of the approximation function (see
ters schematic structure; b) Comparison between the onsite measurements done at the
graph of the considered power plant.



Fig. 8. Calculated PV potential for a) Ed
A�Si

, b) Ed
P�Si

, and c) Ed
M�Si

(as defined in Equation (7)), PVMs, where the colours of the roofs correspond to the intensity of the PV potential.
The vegetation was omitted from the visualization in order to see the buildings’ roofs more clearly.
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Fig. 3a). The next section shows the efficiency-differences for in-
clined and oriented roofs’ surfaces from real spatial data obtained
with aerial LiDAR scanning, where topographical features and in-
fluences from shadowing are additionally considered.

3. Results

The proposed method was performed on w0.5 km2 urban part
(46� 33.50 N, 15� 38.50 E) of Maribor city in Slovenia. The classified
Fig. 9. Differences in estimated PV potential when using constant and nonlinear efficiency ch

Ed
M�Si

.

LiDAR point cloud was inserted into a grid with 1 m2 per-cell res-
olution, as can be seen in Fig. 6.

At first, the accuracy of the proposed method was tested by
comparing the estimated electrical power with measured produc-
tion of electrical power obtained by the local 7.5 kWp grid-
connected PV power plant at the Faculty of Electrical Engineering
and Computer Science (46� 33.540 N, 15� 38.380 E) in Maribor (see
Fig. 7a, c). Thepowerplant’s PV systemwas equippedwithM-Si PVM
that is an older type of PVMthan theone shown inTable 1. Therefore,
aracteristics for the micro solar inverter and different PVMs: a) Ed
A�Si

, b) Ed
P�Si

, and c)
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its nonlinear efficiency approximated function fitting parameters
were calculated as p1 ¼ 2.922, p2 ¼ 0.44919, p3 ¼ 0.30913,
p4 ¼ 2.67053, and p5 ¼ 1.95004. The plant’s time-series data of
measured produced power was available for the duration of 2006e
2012 with a 5 min time-step, which were then averaged over a
30 min interval in order to estimate an average-year from the
duration of 6 years of measurements. The averaged measured data
was then comparedwith the predicted electrical power by using the
proposed method and applying the same time-step.

Three 2.5 kW inverters were operating at the local power plant
(see Fig. 7a). Therefore in order to achieve a more accurate com-
parison, the power plant was spatially divided into three equally-
large regions, each for one inverter (see Fig. 7a). As the measure-
ments were available for the 2.5 kW inverter, its efficiency was
approximated using:

hinvr

�
MM�Si

r ðIrÞ
�

¼ �0:7965e�0:0231 MM�Si
r ðIrÞ

� 0:0874e�0:0006 MM�Si
r ðIrÞ þ 0:9377; (8)

where MM�Si
r ðIrÞ ¼

Pm
i¼1 M

M�Si
Ci

ðICi
Þ;Ci˛r, and r defines one of the

three regions with its own inverter. Each region consisted ofm cells
(i.e. PVMs) with well-defined connections, which sufficed for vali-
dation purposes. The estimated total electrical power was then
calculated asPM�SiðMM�Si

r ðIrÞÞ ¼ P3
r¼1 h

inv
r ðMM�Si

r ðIrÞÞMM�Si
r ðIrÞ.

Since multiple PVMs were connected to each inverter, the calcu-
lated shadowing played a key role in the accuracy of the proposed
method. Fig. 7b shows the comparison between the estimated
produced power and the measured production over four extreme
days. In the autumn and the spring, the nonlinear efficiency char-
acteristics had an overestimation of 2% in comparison with the
measured produced electricity, whilst when considering the con-
stant efficiency characteristics an underestimation of 10% occurred.
During the summer the nonlinear efficiency had an overestimation
of 1%, and the constant efficiency an underestimation of 8%. During
Fig. 10. Differences in cumulative estimated electrical energy production with and without
EA-Si, b) EP-Si, and c) EM-Si.
the winter, the nonlinear and constant efficiency characteristics
had underestimations of 4% and 12%, respectively.

Over the considered area (as shown in Fig. 6) the proposed PV
potential was estimated by using the nonlinear efficiency charac-
teristics of different PVMs and the solar micro-inverter, as can be
seen in Fig. 8. M-Si PVM type had a maximum PV potential of 530
[Whm�2] and was the most efficient of all three considered PVMs
used within the considered urban area. M-Si and A-Si had
maximum PV potentials of 418 [Whm�2] and 210 [Whm�2],
respectively. When calculating the spatio-temporal irradiance for
PV potential, the time-dependent direct and diffuse solar irradi-
ances were considered that were based on 10 years of measure-
ments (as shown earlier in Fig. 2b) with 30 min time-steps.

Further analysis was performed by calculating the difference
between the buildings’ roofs PV potential when considering con-
stant and nonlinear efficiency characteristics regarding different
PVMs and a solar inverter. This was done per-cell, as shown in Fig. 9.
The largest difference can be seen in A-SiC, where the maximum
difference of 42.5 [Whm�2] corresponded to a difference of 20.2%
(i.e. 42.5/210), whilst the maximum differences for P-Si and M-Si
were 29.0 and 39.6 [Whm�2], respectively. This corresponded to
6.9% and 7.5% differences in estimation (i.e. underestimation),
respectively. Furthermore, in all three cases, the least differences
were found for roofs oriented toward the south, whilst the highest
differences occurred when considering flat roofs with negligible
inclinations. Roofs oriented towards the north had similar differ-
ences when considering P-SiC or M-SiC, whilst being almost equal
as in the cases of flat roofs when considering A-SiC.

The degradation of the PV systems’ due to ageing was also
analysed. This was done by calculating the difference in cumulative
electrical energy production for the next 10 years with and without
considering the influence of ageing. In Fig. 10 the calculated dif-
ferences can be seen, where the least difference was observed in
the case of M-Si, and the largest for P-Si. The differences for M-Si
and P-Si appear consistent within the spatial-temporal context,
using the influence of aging for the next 10 years, when considering different PVMs: a)



Fig. 11. Segments’ average cell’s EXdCi
, by considering building roofs’ segments oriented northeast, southeast, northwest, and southwest. Two corresponding graphs are shown for

each segment: produced electrical energy throughout the year when using different efficiency characteristics, and cumulative differences between constant and nonlinear efficiency
characteristics.
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where the largest differences occurred for roofs oriented towards
the south. Although similar results were observed for A-Si, the
horizontal and north-oriented surfaces had slightly higher
differences.

In order to see the discussed efficiency-difference in spatial
context, additional analyses were performed on four different roofs’
segments that were oriented towards the four ordinal geographical
directions, as shown in Fig. 11. The average per-cell daily produced
electrical energy EXdCi

was calculated for each roof. The roof’s seg-
mentation was performed by the algorithm that was previously
used in Ref. [44]. In all four cases the highest overestimation in
cumulative EXdCi

occurred when considering A-SiC, as previously
observed in Fig. 9a. Moreover, the roofs oriented towards the south
had lower underestimations when considering M-SiC and P-SiC, as
opposed to north-oriented roofs where all three considered PVMs
had more significant overestimations with constant efficiency
characteristics.

4. Conclusion

This paper proposed a novel method for calculating PV
(photovoltaic) potential by estimating average daily production of
electrical energy throughout the year, over LiDAR (Light Detection
And Ranging) data. The estimation of produced electrical power
was done by considering nonlinear efficiency characteristics for
different types of PVMs (photovoltaic modules) and a solar micro-
inverter. These were approximated with modelled irradiance-
dependent functions that were best-fitted to the measured elec-
trical power in order to approximate efficiency characteristics. This
was achieved with an efficiency model for each type of considered
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semiconducting material used in PVMs. The presented method also
takes into account the efficiency degradation of PVMmodules with
regard to their age. The estimation’s input was the accurately
calculated per-cell solar irradiance with a given time-step, where
different influential factors were considered (e.g. topography, self-
shadowing, vegetation and shadowing from the surrounding ter-
rains together with long-term time-series data of direct and diffuse
solar irradiance measurements).

To our knowledge, the presented method is the first that uses
the nonlinear efficiency characteristics of multiple PVMs and a solar
inverter, when estimating PV potential over buildings’ roofs ob-
tained with ALS (aerial laser scanning), and long-term irradiance
measurements. However, this method is also applicable to geo-
spatial 3D data acquired from other remote sensing technologies.
When considering constant efficiency characteristics several esti-
mation errors regarding the predicted production of electrical po-
wer were shownwithin a spatio-temporal context, since they were
calculated as the average values from functions approximating
nonlinear efficiency characteristics. Moreover, the presented
method has high accuracy as was shown in the comparison with
the measurements at the local solar power plant. The accuracy
mainly depends on the resolution of the input data (e.g. LiDAR point
cloud and irradiance measurements) of the presented method.
With this work, more accurate insights are provided for solar en-
ergy investments within large-scale urban areas. For future-work, a
higher accuracy would be achieved by considering spatio-temporal
influence of temperature and air mass at the PVM level.
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Appendix A
Table A.1
Manufacturer’s original data for the considered PV module types.

Manufacturer’s original data PV module

A-Si P-Si M-Si

Efficiency 7.4% 12.9% 15.9%
Nominal power 77 W 233 W 190 W
Deviation in power �5% �3% �3%
Short-circuit current 1.2 A 8.5 A 5.6 A
Maximum power point voltage 69.9 V 29.3 V 36.7 V
Nominal operating cell temperature 45 �C 44 �C 72 �C
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