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Abstract 

In this paper we present, demonstrate and validate a method for predicting city-wide electricity gains from 
photovoltaic panels based on detailed 3D urban massing models combined with Daysim-based hourly 
irradiation simulations, typical meteorological year climactic data and hourly calculated rooftop 
temperatures. The resulting data can be combined with online mapping technologies and search engines 
as well as a financial module that provides building owners interested in installing a photovoltaic system 
on their rooftop with meaningful data regarding spatial placement, system size, installation costs and 
financial payback. As a proof of concept, a photovoltaic potential map for the city of Cambridge, 
Massachusetts, USA, consisting of over 17,000 rooftops has been implemented as of September 2012. 

The new method constitutes the first linking of increasingly available GIS and LiDAR urban datasets with 
the validated building performance simulation engine Daysim, thus-far used primarily at the scale of 
individual buildings or small urban neighborhoods. A comparison of the new method with its 
predecessors reveals significant benefits as it produces hourly point irradiation data, supports better 
geometric accuracy, considers reflections from neareby urban context and uses predicted rooftop 
temperatures to calculate hourly PV efficiency. A validation study of measured and simulated electricity 
yields from two rooftop PV installations in Cambridge shows that the new method is able to predict 
annual electricity gains within 3.6 to 5.3% of measured production when calibrating for actual weather 
data and detailed PV panel geometry. This predicted annual error using the new method is shown to be 
less than the variance which can be expected from climactic variation between years. Furthermore, 
because the new method generates hourly data, it can be applied to peak load mitigation studies at the 
urban level. This study also compares predicted monthly energy yields using the new method to those of 
preceding methods for the two validated test installations and on an annual basis for ten buildings selected 
randomly from the Cambridge dataset. 
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INTRODUCTION 

As our knowledge of how to technically make individual buildings more energy efficient matures, the challenges to 
accomplish widespread adoption of energy saving measures are changing. For individual building owners, 
implementing energy efficiency measures has become primarily a question of obtaining meaningful information 
regarding installation costs, potential energy savings and payback times. In tandem with our advances in building 
technology, cities in many countries now command unprecedented access to data of their jurisdiction’s building 
stock which can be further analyzed and mapped to inform policy decisions. Within this context, it has become 
increasingly popular for cities and municipalities to create ‘solar potential maps’ with the intent of promoting 
renewable energy generation through photovoltaic (PV) panel installations within their jurisdictions. In the United 
States, larger cities such as Boston, Los Angeles, New York City and Portland provide online maps which allow 
building owners to look up their address and view personalized predictions such as, 

 electric production from a PV system (kWh) 

 energy savings from a solar hot water (SHW) system (therms)  

 resulting annual electricity savings (dollars) 

 carbon savings (lbs) 

 useful roof area for installing PV panels (sq. ft.) 

 system payback period (years) 

 system costs (dollars) 

 local rebates and incentive programs (dollars savings) 

 

The objective of these maps and accompanying personalized property information is to increase the environmental 
awareness of residents, reduce greenhouse gas emissions and to improve the sustainable image of a city through the 
expansion of solar energy technology. While a number of cities have already generated such solar maps, to the 

 

Table 1 Survey of Existing Solar Potential Mapping Methods in North America  

CITY URL FLAT ROOF METHOD (2012) METHOD (2013) 

Anaheim http://anaheim.solarmap.org/ No Solar Analyst Unknown 

Berkeley http://berkeley.solarmap.org/ Yes Constant Unknown 

Boston http://gis.cityofboston.gov/SolarBoston/ Yes Solar Analyst Solar Analyst 

Denver http://solarmap.drcog.org/ No Unknown PVWatts 

Los Angeles http://solarmap.lacounty.gov/ No Unknown Unknown 

Madison http://solarmap.cityofmadison.com/madisun/ No Constant PVWatts 

New York City http://nycsolarmap.com/ No Solar Analyst PVWatts 

Portland http://oregon.cleanenergymap.com/ Yes Constant No longer exists 

Salt Lake City http://www.slcgovsolar.com/ No Solar Analyst Unknown 

San Diego http://sd.solarmap.org/solar/index.php ? Unknown Unknown 

San Francisco http://sf.solarmap.org/ Yes Constant Constant 

Sacramento http://smud.solarmap.org/ No -- Unknown 

Orlando http://gis.ouc.com/solarmap/index.html No -- Unknown 

Various http://www.geostellar.com/  No -- Unknown 
 

http://anaheim.solarmap.org/
http://berkeley.solarmap.org/
http://gis.cityofboston.gov/SolarBoston/
http://solarmap.drcog.org/
http://solarmap.lacounty.gov/
http://solarmap.cityofmadison.com/madisun/
http://nycsolarmap.com/
http://oregon.cleanenergymap.com/
http://www.slcgovsolar.com/
http://sd.solarmap.org/solar/index.php
http://sf.solarmap.org/
http://smud.solarmap.org/
http://gis.ouc.com/solarmap/index.html
http://www.geostellar.com/
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authors’ knowledge, limited attention has been paid to the assumptions and calculation methods underlying these 
maps. This paper is organized as follows: Initially a survey is conducted of existing solar potential maps in the 
United States as well as of existing research. The underlying methodologies used in practice and research are 
discussed in detail. We then present a new method of how a validated solar radiation calculation algorithm, thus far 
typically used at the individual building scale, can be combined with an hourly rooftop temperature model and 
applied to a city-sized model of Cambridge, Massachusetts, USA. The method creates city-wide solar potential maps 
with a high degree of spatial and predictive accuracy based on the generation of a high resolution three-dimensional 
(3D) model sourced from available geographic information systems (GIS) data. As a validation of the new method, 
hourly and daily energy yields from two actual operating PV systems are compared against the new method’s 
predictions using calibrated weather data. Next, results from the new method are compared with those one would 
obtain using existing methods. Finally, we discuss what relevance varying simulation results may have at both the 
individual building owner and city-wide policy level using ten sample buildings from the Cambridge building stock.  

The authors conducted a review of solar potential maps for North American cities (Table 1). In March of 2012, 
eleven maps were surveyed, and one year later thirteen maps were surveyed. We found that there are three typical 
predictive methodologies in place for calculating rooftop irradiation and associated photovoltaic potential. In 2012, 
three (27%) of the surveyed maps used a constant assumption for solar irradiation reaching a building rooftop, 
defined in the following paragraph. One (9%) reported using the National Renewable Energy Laboratory’s (NREL) 
PVWatts calculation module (Marion, et al. 2001). Another five (45%) used the Solar Analyst plugin within Esri’s 
ArcGIS program (Fu and Rich 1999). The remaining maps did not report their calculation methodology. In 2013, 
two maps switched to PVWatts as their prediction method, raising its usage to 23% of available North American 
solar potential maps. Simultaneously maps reporting using Solar Analyst dropped to just one (7.7%). In reality, the 
picture this paints is a skewed one. Of the thirteen maps surveyed which still exist, 39% (Anaheim, Denver, 
Madison, Sacramento and Orlando) require manual input of slope, azimuth and system size. These maps do not 
automatically map solar potential, but they often have accompanying raster graphics of sunlit hours to help users 
define their systems. 

Outside of already existing solar potential maps, there are several methods which have emerged from research. 
R.sun (Šúri and Hofierka 2004) has been used to map solar potential for large geographic areas and cities, but it has 
not, to the author’s knowledge, been used in city-scale public solar potential mapping applications such as  those 
detailed in Table 1. PV Analyst (Choi et al. 2011), PV-GIS (Šúri, Huld and Dunlop 2005) and a series of other solar 
irradiation and photovoltaic calculation methods and case studies are also discussed in the proceeding paragraphs.   

Solar potential maps using a constant assumption simply predict that every point on a rooftop receives the same 
amount of solar irradiation irrespective of orientation and surrounding context. Usually this value is derived from 
annual global horizontal irradiation measurements from a nearby weather station. Such use of a constant, solar 
radiation value across a rooftop will be inaccurate in many cases, for example buildings with peaked roofs where 
each surface of the roof is oriented towards a different section of the sky. The use of a constant value also does not 
consider local urban context such as trees and neighboring buildings, which shade building rooftops. Those who 
employ this approach determine the useful roof area for PV installation by using either a constant percentage 
(Oregon Clean Energy Map 2012) or based on orthophotographic image analysis techniques (San Francisco Solar 
Map 2012 and Berkeley Solar Map 2012).  

The NREL PVWatts web service uses a considerably more detailed method (Marion, et al. 2001) in which hourly 
solar irradiation is distributed on a 40km square grid for the entire United States based on the typical meteorological 
year 2 (TMY), dataset (Marion et al. 2001). Local TMY2 irradiation data is used in combination with a manually 
input DC power rating, PV panel tilt and orientation as well as model-derived panel temperature conditions and 
climate-based sky models to determine energy production. While roof shape is treated with greater detail than in a 
solar constant approach, shading and reflections from adjacent urban surfaces also cannot be modeled using 
PVWatts. This suggests limited applicability in dense urban areas where buildings and trees may shade future PV 
panels. PVWatts has been validated by Cameron, Boyson and Riley (2008) using measured data from an unshaded, 
rack-mounted system. It was shown that PVWatts is accurate with an average bias between 9.6 to 10.2%. However, 
an interface such as PVWatts is difficult to automate for an entire city as every roof surface with a differing slope 
and azimuth must be input separately. The New York City Solar Map (2013) automates this practice, but all other 
existing maps using PVWatts do not. 
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Esri’s Solar Analyst plugin represents the city as a digital elevation model (DEM). A DEM is a geolocated raster 
image where the values of individual pixels correspond to elevation measurements. A sky mask is initially generated 
based on the surrounding pixel values for each pixel in the DEM. Direct and diffuse components of irradiation are 
calculated based on the amount of the sky which can be seen from each pixel. Direct irradiation is calculated in 
accordance with the sun position, the slope of the DEM, a fixed sky transmissivity coefficient, and the distance a 
solar ray must travel through the atmosphere. Diffuse irradiation is calculated in much the same way as the direct 
component, based on either a uniform sky model or a standard overcast model; however, no solar map reports on its 
website which sky model was used. As Solar Analyst uses only a sky mask based on a DEM, it has no capacity to 
model reflected radiation from neighboring buildings, surrounding trees or the urban terrain. It has been proposed to 
assume a directional constant of reflected irradiation for obscured sky areas (Rich, et al. 1994), but it would be 
inadequate to consider complex reflections from surrounding buildings and landscape. In Solar Analyst, sky 
transmissivity and the ratio between direct and diffuse insolation are fixed, constant values throughout the year. 
These assumptions can have significant impact on calculated annual irradiation. For example, the Boston Logan 
TMY3 weather data illustrates a ratio between direct and diffuse irradiation which varies widely throughout the year 
(US Department of Energy 2012). Figure 1 displays diffuse horizontal irradiation versus direct horizontal irradiation 
from this data. Points are shaded based on the observed cloud cover at that hour. The mean direct-to-diffuse ratio of 
insolation for Boston is 64%; however, the standard deviation from the mean is 31%, and neglecting this variance is 
obviously incorrect. The reader may for example imagine a site with predominantly clear skies in the morning and 
cloudy afternoons. For that site an east-facing surface receives considerably more solar radiation than its west-facing 
counterpart, a climate-specific idiosyncrasy that Solar Analyst cannot resolve.  

 

Figure 1 Hourly Direct and Diffuse Radiation and Cloud Cover from Boston Logan TMY3 Weather Data  

R.sun (Šúri and Hofierka 2004) is a model implemented in the open source GRASS GIS program (GRASS 
Development Team 2013) which resolves perceived limitations noted in the Solar Analyst model. One major 
difference compared to Solar Analyst is that r.sun has the ability to model the solar insolation of very large 
geographic areas which transcend several differing climate zones by setting the percent of direct and diffuse 
irradiation as spatially resolved raster images rather than as fixed values as in Solar Analyst. A second notable 
difference is that r.sun makes a provision for ground reflected solar irradiation; however, its model assumes that all 
ground reflection is accounted for by surface inclination, global horizontal irradiation and ground albedo which does 
not account for shaded or unshaded portions of ground nor the actual geometry of its context. While r.sun is 
deployable across geolocated raster DEMs, it has significant limitations in usability for the purpose of annual city-
scale photovoltaic potential maps. The first limitation is that r.sun is only capable of modeling a single day or hour 
of irradiation at a time. This means that a detailed annual calculation requires at least 365 raster results images to be 
created and processed independently. A second limitation is that direct and diffuse percentages of irradiation can 



 

A method for predicting city-wide electric production from photovoltaic panels based on LiDAR and GIS data 

combined with hourly DAYSIM simulations  

Jakubiec, J. A. & Reinhart, C.F., 2013 

Page 5 of 23 

 

only be set as raster image inputs and not as fixed values meaning that for modeling a small geographic area such as 
a city, it is inconvenient to model climactic effects. To model the typical daily changes from a source such as a 
weather file, it is necessary to create separate beam and diffuse percentage raster images for every day in the year. 
To consider typical hourly changes, as in the case of the example above where a city has clear mornings and cloudy 
afternoons, raster images need to be created for every hour in the year. It is appropriate to mention here than GRASS 
has a powerful scripting engine which can help in managing this task. 

Besides the methods discussed in the preceding paragraphs, many others have documented their process towards 
analyzing photovoltaic potential in cities and neighborhoods using GIS data and various simulation programs. PV-
GIS (Šúri, Huld and Dunlop 2005) is a web-based tool similar to PVWatts supporting African and European 
analysis which uses calculations from r.sun modified by measured direct and diffuse monthly average irradiation  
raster images as its underlying weather data source. PV Analyst (Choi et al. 2011) coupled TRNSYS simulations of 
photovoltaic panels with a DEM in Esri’s ArcMap tool, suggesting a desire for the application of validated 
algorithms in solar potential modeling; however, the tool is yet to be released. PV Analyst relies on Solar Analyst 
for shading calculations and TRNSYS for irradiation and PV yield calculations. Others (Brito et al. 2011, Nguyen 
and Pearce 2010, Nguyen and Pearce 2012), have used monthly averaged beam and diffuse solar data with r. sun to 
calculate photovoltaic potential of relatively small urban developments. Hofierka and Kanuk (2008) perform the 
same without noting how climate is accounted for. However, r.sun has mostly been applied to very large areas such 
as Europe and Africa (Šúri, Huld and Dunlop 2005, Bergamasco and Asinari 2011, Huld, Müller, and Gambardella 
2012, Ruiz-Arias 2012, Palmas et al. 2012), and its raster-based input methods suggest the tool is most appropriate 
for large geographic areas. Lukač et al. (2012) calculated direct and diffuse irradiation based on measured climate 
data, roof slope and aspect and overshadowing potential from neighboring buildings and landscape. Schallenberg-
Rodriguez (2013) eschews using a simulation engine at all by suggesting that for regional feasibility studies, 
relatively simple spreadsheet calculations are adequate; however, for spatially detailed building-rooftop analysis, 
such calculations are not capable of accounting for shading from contextual geometry or detailed resolutions of roof 
shape.  

Geometric and Material Assumptions 

Of the surveyed solar potential maps, four (28.6%) assume that all buildings in the city have flat roofs at a known 
elevation, four (28.6%) used a detailed DEM, five (35.7%) relied on user input to represent the roof slope and 
aspect, and the remaining map did not report its assumptions. Of cities utilizing the flat roof assumption, half 
assumed that a fixed percentage of the roof is suitable for PV (Boston, Portland). The others relied on a proprietary 
orthophotographic image analysis method for locating rooftop obstructions (Berkeley, San Francisco). Maps using 
DEMs determine useful roof area either by the predicted rooftop irradiation or by the number of daylit hours 
observed in a year. The effect on simulation results of assuming a flat roof are discussed later in the paper. 

The source height measurements for DEMs often come from LiDAR, Light Detection And Ranging. LiDAR is an 
established, accurate measurement system wherein a surveying aircraft emits rapid laser bursts and records the time 
until their visual return while tracking its location via Global Positioning Systems (GPS). The collected location and 
timed return data is later processed into geographically located point data. Practically, LiDAR is the most accurate 
way to measure an entire urban area, including detailed roof forms and landscape. The majority of detailed solar 
potential surveys of urban areas use LiDAR point measurements in constructing digital elevation models to use as 
input to solar irradiance calculations (Brito et al. 2011, Nguyen and Pearce 2010, Nguyen and Pearce 2012, 
Yimprayoon and Navvab 2010, Lukač et al. 2012, MadiSUN 2012, Geostellar 2013).  

None of the surveyed cities or research methods discussed in this section employ a method which considers 
physically accurate reflections from urban context. 

 

METHODOLOGY 

LiDAR Data, Accuracy, and the Construction of a Detailed Three-Dimensional Model 

The authors’ implementation of an urban solar potential map is based on the creation of a detailed 3D model in the 
validated Radiance / Daysim backward-raytracing daylight simulation engine (Ward 1995, Reinhart and 
Walkenhorst 2001). The advantages of creating an actual 3D representation of the city compared to a DEM are that 
roof surfaces can be properly modeled as smooth sloping planes rather than a pixelated height representation and 
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that accurate reverse-raytracing simulations can be implemented that account for reflections and shading from the 
surrounding context. The geometric information used in creating the 3D model of Cambridge comes from a 2010 
LiDAR survey of the city. The vertical accuracy of the data in the urban context of Cambridge was bounded to less 
than 1m root-mean-square error (RMSE). In validation tests of selected areas the RMSE between LiDAR and 
traditional GPS measurement methods was shown to be 0.062m (Alliance for Sustainable Energy 2010).  

The employed process of creating a detailed 3D urban model is illustrated with an example surrounding the Kresge 
Oval at the Massachusetts Institute of Technology in Figure 2. As LiDAR data is not uniformly sampled in plan, it 
creates an awkward data space (Figure 2(b)) where different point densities are present depending on the airplane 
path of flight. Initially, there were 126,624,764 points spread across Cambridge, which has a total area of 
approximately 18.5 km2 (4,500 acres). We uniformly resampled the LiDAR data over a plan grid of approximately 
1.25x1.25m (4’x4’) spacing, taking the mean of the first return data where multiple points existed. Resulting 
neighboring points which did not vary by greater than 0.3 meters vertically were discarded. This resulted in a 
simplification of the data space to a mere 9,403,750 points without losing much geometric resolution. The simplified 
LiDAR-derived points were then divided into two categories using publicly available GIS datasets from the City of 
Cambridge: buildings and ground scape (Figure 2(c)) (City of Cambridge 2004). As a final step, the two groups of 
points were triangulated using a Delaunay algorithm (Figure 2(d)), resulting in a highly accurate and detailed 3D 
model of the entire City of Cambridge that consists of 16,547,790 triangular surfaces. 

 

(a) Birds-eye image of the Kresge Oval (Google) 

 

(b) Initial, nonuniformly dense LiDAR point data 

 

(c) Resampled and categorized LiDAR points 

 

(d) Resulting 3D model 

Figure 2 Process Images of 3D Model Generation from LiDAR and GIS Data 
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Hourly Simulations with Radiance/Daysim 

The triangulated surface model was then converted into the Radiance backward raytracer format. In Radiance each 
surface may have different, highly customized, optical surface properties. In the authors’ model it is assumed that 
building walls are Lambertian diffusers with a 35% reflectance while the surrounding landscape has a diffuse 
reflectance of 20%. Rooftop reflectances and absorptivities were calibrated based on information from the City of 
Cambridge Tax Assessor’s Database for roofing material (City of Cambridge 2011). Annual irradiation was then 
calculated on each building roof surface at a grid resolution of 1.5x1.5m (5’x5’). Simulation sensor points are 
located approximately 0.5mm (1/64”) above and facing in the normal direction of the roof surface.  

Simulations are performed with Daysim, a validated fork of the Radiance program that uses a daylight coefficient 
approach (Mardaljevic 2000) and the Perez all-weather sky model (Perez, et al. 1993) to predict annual point 
illumination and irradiation while considering climate-specific data (Daysim 2013). Daysim works by performing 
one raytrace operation to a sky dome consisting of 145 diffuse sky segments, 3 ground segments and a second 
raytracing run with approximately 65 direct solar positions that are distributed along the annual solar path. By 
tracing backwards from the simulation sensor points, each sky segment and solar position is then weighed relative to 
its contributions to each point in the scene. In this manner, irradiation can be simulated for an entire year in any 
incremental time step without running thousands of separate and lengthy raytracing calculations while considering 
measured typical climate information, contextual shading and reflections based on a detailed three-dimensional 
geometric model. In the author’s study, irradiation simulations were performed at an hourly timestep. Daysim has 
been shown by many studies to be highly accurate in modeling visible wavelength natural light in diverse climates 
and sky conditions (Reinhart and Walkenhorst 2001, Reinhart and Andersen 2006, and Reinhart and Breton 2008, 
Jakubiec and Reinhart 2013). Ibarra and Reinhart (2011) compared Daysim predictions of irradiation against a 
measured dataset and showed that Daysim is able to accurately resolve temporal variations in longwave solar 
irradiation in urban contexts. 

Table 2 documents the Daysim simulation parameters used in the authors’ simulation in order to ensure simulation 
accuracy. Parameters were primarily considered in relation to the unusually large size of the Cambridge model. 
Errors in the ambient calculation were calibrated to be acceptable for surfaces spaced four feet apart and larger. As 
the model was resampled at this resolution in plan and simulation sensor points are spaced beyond this threshold, the 
assumption seems reasonable. According to Ward, error will “increase on surfaces spaced closer than the scene size 
divided by the ambient resolution” (Rtrace man page 2012). Thus the Radiance scene size of 26,526.5 ft divided by 
four gives an ambient resolution of approximately 6,750. This means that ambient interpolation is unlikely to occur 
across separate triangles in the scene which may have different orientations and solar condtions. Ambient divisions 
are set at 2048 such that for each sensor point and ray reflection, 2048 rays are cast to sample the ambient 
environmental conditions. In essence, the model accounts for any geometry which occupies a perceived solid angle 
larger than 0.0031 sr. Direct contribution is sampled deterministically for each ray reflection. The simulation 
considers up to two ambient reflections from direct solar irradiation and one reflection from diffuse sky irradiation 
from the environment (ambient bounces, ab). 

Table 2 Key Radiance/DAYSIM Simulation Parameters 

PARAMETER DESCRIPTION VALUE 

ab 

ad 

as 

ar 

aa 

ambient bounces 

ambient divisions 

ambient super-samples 

ambient resolution 

ambient accuracy 

2 

2048 

16 

6750 

0.1 

Calculation of Photovoltaic Yield 

As previously discussed, a key benefit of the new method is direct access to hourly simulated irradiation data and 
the detailed Perez sky model that approximates actual sky radiance distributions for each hourly time step in the 
year. Knowing in addition the explicit area beneath each simulated point and information about the urban climate, a 
reasonable calculation can be made for the performance of a PV panel in an urban context.  
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A direction vector is assigned to each simulation sensor point based on the normal direction of the roof surface 
immediately below it. Assuming that the roof is planar and unvarying below the area the point represents, ~1.5m2 in 
this case, a method of calculating the area is shown in Equation 1 and illustrated in Figure 3, where  ⃗  is the unitized 
roof surface normal vector.  

 

Figure 3 Illustration of the geometric terms in Equation 1 

           [   ]   ⃗  (1) 

                   ሺ    ሻ   (2) 

            ሺ       ሻ           (3) 

          [    ሺ     ሻ] (4) 

 

 

PV performance is dependant on many factors which are unknown at the time of making a conceptual irradiation 
map such as module efficiency, panel orientation, wiring and equipment and maintainance conditions. However, it is 
known that high ambient temperature and solar radiation heating up the panel will have an adverse effect on its 
production. Furthermore, air temperatures near urban rooftops will be higher than the ambient air temperature due to 
the effects of solar radiation; therefore, the sol-air temperature is used to approximate this phenomenon, shown in 
Equation 2. The sol-air temperature is the urban ambient temperature (Tamb-air,   ) plus the absorptivity of the roof 
( , percent) multiplied by the incident irradiation (E, Wm-2) and divided by a convective and radiative loss factor 
(hc, Wm-2-K) which we assume to be a constant 15 Wm-2-K. In the model, rooftop absorptivity is estimated per 
building based on roof type data in the Cambridge Tax Assessor’s database (City of Cambridge 2011). The sol-air 
temperature is used to predict panel temperatures in Equation 3 by relying upon knowledge of the nominal operating 
cell temperature at Nominal Operating Cell Temperature (T0) (Luque and Hegedus 2011). Further, the photovoltaic 
maximum power at ideal conditions (      ) can be derated based on a temperature correction factor ( , %/̊ K) 
(Equation 4) (Marion, et al. 2001). The temperature correction factor is usually provided by PV panel manufacturers 
with panel specification information. Huld et al. (2006) predicted monthly average temperature profiles of Europe to 
use in calculating PV efficiency reductions. Their results were implemented in the PV-GIS web service; however, an 
annual efficiency reduction factor was used. In the authors’ new method, it is possible to resolve this efficiency loss 
on an hourly basis.  

Equations 1-4 are used as a first-order approximation in derating panel efficiency based on ambient air temperature 
and point irradiation at each hourly timestep. 

Determination of Useful Rooftop Area 

Useful rooftop area in the model is calculated based on the predicted economic feasibility of panels installed at a 
location. Any roof surface sloping greater than 60 degrees (67%) was discarded and instead considered to be a 
vertical surface or wall. The reader should note that this cutoff was an arbitrary choice and the method itself would 
also be capable of modelling façade integrated photovoltaics by generating simulation sensors on such wall surfaces. 
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No rooftop setback was considered in this study; therefore, useful rooftop area can extend to the edge of the roof 
surface.  

According to the Massachusetts Clean Energy Center, in 2011 the average PV installation costs were $5.67 per watt 
in Cambridge (MassCEC, 2012). Assuming a typical panel that is rated at 185W/m2 (17.2 W/ft2) (Sunpower 
E18/230W 2012), the installation cost follows to be $1049.70/m2 ($97.52/ft2). The 2012 Cambridge cost of 
electricity for residential customers was $0.15/kWh which is fixed for the duration of the financial analysis. 
Requiring a ten year investment period with a ten percent discount rate per year, 1244.9 kWh/m2-yr (115.7 kWh/ft2-
yr) would have to be generated to have a net present value (NPV) in which the investment breaks even, when NPV 
equals zero. An ideally oriented solar panel in Cambridge receives approximately 1600 kWh/m2-yr (149 kWh/ft2-yr) 
of solar irradiation annually and would hence require a panel efficiency of nearly 80% in Cambridge for the system 
to break even in ten years. If one only required a simple payback over the same 10 year period, the panel efficiency 
would still need to be nearly 50%. 

National and state rebate programs that exist to improve the economic feasibility of PV for residential properties 
seriously change the financial outlook of such installations. In 2012 the US federal government offered a 30% tax 
rebate on the cost of a PV installation (Energy Improvement and Extension Act 2008). Further, Massachusetts 
offered a 15% rebate up to a maximum of $1,000 that could be carried over for three years (Residential Renewable 
Energy Income Tax Credit 1979). The Massachusetts Clean Energy Center offered a minimum $0.40/W rebate on 
new PV systems (MassCEC 2012). Massachusetts also offered a 100% protection from increased property taxes due 
to PV installations for a 20 year period (Renewable Energy Property Tax Exemption 1975). Finally, Solar 
Renewable Energy Certificates (SRECs) are ways of trading proof of generating sustainable energy as a commodity. 
The ‘floor’price of these commodities is currently valued at $0.285/kWh (DSIRESOLAR 2012). Factoring these 
rebates and incentives into the previous NPV calculation, it is possible to have a break even point for an unshaded 
panel at 7.5% efficiency without accounting for future energy prices or PV panel degredation. This means that 
considering an investment period of 10 years for an example Sunpower panel, any point which has the capacity to 
generate over 121 kWh/m2 (11.25 kWh/ft2) of energy per year is likely to recoup its value while providing additional 
savings after the initial 10 year period as the effective lifetime of a PV system is known to be typically greater than 
30 years. Thus such points and their associated roof areas are considered to be useful to install PV panels. As the 
point-based simulation results from this study are displayed spatially (see results section), it is possible to determine 
optimal placement locations for PV panels coincident with urban rooftops.  

Geolocation of Data From GIS to Radiance Simulation Models 

All GIS models including the LiDAR data and building footprints were constructed in the projected North American 
Datum 1983, Massachusetts State Plane Mainland coordinates system (Schwarz and Wade 1990). This is a 
serendipitous choice as distances and areas can still be measured without necessitating geographic corrections. Thus, 
the Radiance/Daysim simulation model was built in an identical coordinate system. The Massachusetts State Plane 
system also has a known relationship between X and Y coordinates and latitude and longitude global coordinates. It 
is possible to translate easily between the two coordinate systems by use of an Inverse Lambert Conformal Conic 
Projection with proper geospatial parameters. 

 

RESULTS AND DISCUSSION 

Comparison of Predictions and Measured Data 

The new method was validated against measured energy production from two installed photovoltaic systems in 
Cambridge. One system is located on the MIT campus’ student center building, and the other on a private residence. 
For each system, hourly measured energy production is compared to hourly predicted energy production. The reader 
should note that this hourly comparison is only conducted with the new method since most previous methods cannot 
predict hourly electricity yields and cannot be reasonably calibrated to use custom hourly weather data.  

The first of the two systems is a 7.2 kW system installed on the roof of the student center, and the second is a 5.9 
kW system in a dense residential area of Cambridge. The student center system consists of 24 Schott 300W panels 
that were installed approximately nine years ago. The residential system consists of 30 Sanyo 195W panels that are 
two years old. Detailed information for both systems is contained in Table 3 below, and Figure 4 shows the 
simulation models used in the validation. Both of the models include the detailed surrounding urban context and 
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accurate representations of the photovoltaic panels being compared to. The student center system is installed nearly 
flat with a panel tilt of 5 degrees while the residential system is installed on a peaked roof which has a tilt of 50 
degrees. The student center system is primarily unshaded by its context; however, trees and a chimney shade small 
portions of the residential system during some times of the year near sunset. Furthermore, the student center system 
has a black asphalt roof while its residential counterpart has a light colored roof. The values reported in Table 3 for 
rooftop absorptivity were estimated based on visual observations. Because the two models are very different in 
terms of orientation, geometry and roof color, we suggest that they constitute a reasonable sample of common urban 
conditions against which to test the new method. 

 

Table 3 System Parameters of Selected PV System 

PARAMETER STUDENT CENTER RESIDENCE 

Panel Count 

PV Model 

Efficiency at Ideal Conditions 

Power at 1,000 W/m2, 25ºC (Pmp0) 

Temperature Correction Factor (γ) 
Panel Tilt 

Panel Azimuth 

Inverter Efficiency 

Panel Age 

Estimated Rooftop Absorptivity 

24 

Schott ASE-300-DGF/50 

12.3 % 

300 W 

0.47 % / ºK 

5 degrees 

22 degrees East of South 

94 % 

9 years 

0.9 

30 

Sanyo HIP-195BA19 

16.8% 

195 W 

0.348% / ºK 

50 degrees 

3 degrees West of South 

96% 

2 years 

0.35 

 

 

(a) Student Center Simulation Model 

 

 

(b) Residence Simulation Model 

Figure 4 Detailed Building Simulation Models in Urban Context  
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Validation Procedure 

In order to compare measured PV energy yields to simulated predictions, it was necessary to use weather data from 
the period of measurement. For this purpose, global horizontal solar irradiation and ambient air temperature 
measurements at 15 minute intervals were acquired from a weather station approximately 0.6 miles (1km) away 
from the MIT campus for the period of July 2011 – June 2012 (Cambridge, Massachusetts Weather 2012). These 
were averaged into hourly values, and the resulting global horizontal solar irradiation was converted into direct 
normal and diffuse horizontal components using the Reindl model (Reindl et al. 1990). Further, the known 
information in Table 3 regarding the two PV panel systems was employed in calculating the resulting energy 
production using the same procedure as explained in the methodology section. Panel efficiency was further reduced 
by a factor of 0.5% per year of operation as has been shown typical in the studies of King and Quintana (King et al. 
1998, Quintana et al. 2002). For example, the nine year old student center PV system is reduced by a factor of 4.5% 
as it is nine years old such that the calculation       ሺ                  ሻ results in a reduced base 
efficiency of 11.75%. Detailed geometric models of the panel systems were digitally constructed to remove 
geometric differences as factors in the comparison. 

Typical Summer and Winter Week Hourly Simulation Results 

Figure 5 illustrates typical summer and winter weeks of hourly measured and simulated data for both analyzed PV 
installations. The residential system does not have winter week information as there was systematic missing and 
shifted data for that portion of the year. The solid black lines represent measured energy generation while the red 
lines indicate predicted energy generation by our model using the predicted sol-air temperature. The black dotted 
lines show predicted energy generation using the ambient urban air temperature. Figures 5(a) and 5(b) show results 
for the student center system. 5(a) illustrates a summer week in 2012. For this week, measured and predicted energy 
values are very similar with a RMSE which is 4.4% of the rated system capacity during daylit hours. 5(b) shows 
similar results during the 2011 winter with a RMSE equating to 4.7% of the system capacity during daylit hours. 
5(c) illustrates a typical summer week of the residential PV system. Its RMSE during daylit hours is 7.3% of the 
rated system capacity. Overall, the good agreement between simulation results and measured data suggests that the 
new method is capable of accurately representing temporal changes in PV yield during hot and cold periods of the 
year. 

An interesting observation is that the effect of high rooftop temperatures is very strong during hot Summer days in 
Cambridge, especially for the unshaded student center system located on the dark roof with an estimated 
absorptivity of 0.9. Figure 5(a) shows that the predicted energy using ambient temperature (black dotted line) varies 
from the measured and predicted energy values (solid black and red lines) for the student center by on average 
18.3% during the summer week. The maximum deviation during this same time is 36.7% on 7/3. Figure 5(c), 
displaying the residential system’s PV yields, reports a weaker temperature effect because its panels are less 
sensitive to changes in temperature (see temperature correction factor (γ) in Table 3), and the rooftop of the 
residential system is clad in a lighter colored material having an estimated absorptivity of 0.35. During the winter, 
the ambient temperature is cold enough that it is a rare occurrence where the predicted energy using ambient air 
temperature and sol-air temperature vary; however, on 12/16 and 12/20 shown in Figure 5(b), there are peak periods 
where there is an observable reduction in predicted energy generation due to higher PV panel temperatures. These 
observations suggest that the consideration of urban rooftop temperature is important in understanding photovoltaic 
yields of panels coincident with rooftops, especially in climates that are warm for a portion of the year and for 
buildings with highly absorptive roof surfaces.  
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(a) Student Center Measured vs Simulated Summer Week Hourly PV Energy Production 

 

(b) Student Center Measured vs Simulated Winter Week Hourly PV Energy Production 

 

(c) Residence Measured vs Simulated Summer Week Hourly PV Energy Production 

 
 

Figure 5 Hourly Results of Simulations Compared to Measurements for Example Winter and Summer Weeks 
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Daily Results 

Cumulative daily energy production information was available for each system. Figure 6 contains daily information 
from the second half of 2011 and the first half of 2012; therefore, it constitutes an entire year of analysis. Days 
where measured weather data was not available or there were errors in the measured PV yield datasets were 
removed from this analysis. The plots 6(a) and 6(b) show measured energy production on the horizontal axis and 
predictions of energy production on the vertical axis. The identity lines on each illustrate an ideal data distribution 
where prediction matches reality perfectly. It can be seen that for all simulated days the agreement between 
simulations and reality is strong as points are clustered about the identity lines. For the student center PV system, the 
daily RMSE is 9.3% of the daily average production of 21.72 kWh. The RMSE of the residential system predictions 
is 9.4% of the daily average production of 23.22 kWh. The greatest error is observed on partially cloudy days where 
the Perez sky model is unable to resolve the position of clouds in the sky based solely on measured global horizontal 
irradiation. 

 

(a) Student Center 

 

(b) Residence 

Figure 6 Measured vs Simulated Daily PV Energy Production 

Annual Results 

Annually the student center simulations predicted 3.6% less energy production than was measured (6365.7 kWh 
measured, 6136.5 kWh simulated). The residential system predicted 5.3% less energy production than was measured 
(5154.6 kWh measured, 4881.3 kWh simulated). To help contextualize the meaning of these numbers, predictions 
were made for each system using a complete set of measured irradiation and temperature data from the same 
weather station for 2008, 2009, 2010 and 2011. The maximum variance in predicted production between the four 
years was 5.19% and 5.82% for the student center and residential PV systems respectively. This suggests that the 
predicted annual error using the new method presented in this paper and calibrated weather data is less than variance 
which can be expected from climactic differences between years. 

Methodological Comparison – Two Cambridge Rooftops 

In the previous section it was demonstrated that the new method is accurate within 3.6 to 5.3 percent annually when 
compared to measured data and calibrating for actual weather. Since the prediction methods reviewed in the 
introduction cannot accommodate measured weather data as input, this section compares simulation results from the 
new method for the two Cambridge rooftop systems to the calculation methodologies reviewed in the introduction. 
The methods used in the comparison are PVWatts, Solar Analyst, r.sun and a solar constant methodology. In all 
cases, the closest possible geometric models were used. Using PVWatts, the exact geometric parameters of each PV 
array were input into the program. For Esri’s Solar Analyst and r.sun, a highly detailed DEM was created based on a 
point sampling of the geometric models pictured in Figure 4 every 0.125 meters. Furthermore, we assume that all 
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methods have perfect knowledge as to the area of the installed PV panels; however, for the solar constant method 
and any which assume that a building’s roof is flat, this assumption is not actually true. As documented in Table 3, 
the student center PV array is nearly flat, with a panel tilt of 5 degrees. On the other hand, the residential PV array is 
tilted at a 50 degree angle; therefore, comparisons using flat roof assumptions were added for the residential system 
in order to illustrate the importance of geometry in city-scale PV potential modeling. . The flat roof calculations use 
perfectly flat roofs which do not accurately represent actual rooftop geometry; however, they do include urban 
context. Our new method uses typical meteorological data (United States Department of Energy 2012) for this 
comparison as discussed in the methodology section. The Solar Analyst calculations herein use the Esri-defined 
default ratio between direct and diffuse radiation. As is common in the earlier reviewed literature, r.sun calculations 
use a standard Linke turbidity factor for urban environments which varies monthly (Hofierka, Šúri and Huld 2013). 
Raster image representations of beam and diffuse clear sky index (Šúri and Hofierka 2004) were created by 
comparing monthly averages of global horizontal beam and diffuse clear sky radiation calculated by r.sun with 
average measured values from the Boston weather file (US Department of Energy 2012). These raster images were 
used as inputs to r.sun in order to account for realistic sky conditions. The values of clear sky index must be between 
zero and one. For Cambridge, computed beam clear sky indices for r.sun ranged between 0.47 to 0.57; however, 
computed diffuse clear sky indices ranged between 1.29 to 1.72. These values greater than one are forced to one 
which results in r.sun underestimating the diffuse component of radiation present in Cambridge. 

Figure 7 illustrates monthly comparisons of the predicted energy yields using the various calculation methodologies 
described previously. 7(a) shows results for the student center PV system, and 7(b) shows results for the residential 
PV system. The red line indicates the calculations of our new model, and the pink padding around that line 
illustrates the monthly RMSE of each system when they were compared to measured data in the previous section. 
For the student center and residential systems, the monthly RMSEs compared to measured data are 7.25 and 5.65 
percent respectively. Table 4 presents annual PV electrical yields, monthly mean bias deviation (MBD), monthly 
root-mean-square deviation (RMSD), and unbiased monthly RMSD for each existing methodology compared to the 
new method. Monthly unbiased RMSD accounts for the mean monthly error by forcing the MBD to be zero.  

Because the new method has been validated specifically for these two geometric contexts and PV systems, the best 
performing models from research and practice will approximate the solid red lines which represent the new method 
in Figure 7. PVWatts (blue line), which has been validated against measured data (Cameron, Boyson, and Riley 
2008), produces results very close to those of the new method for both systems. The notable exception to this is that 
PVWatts calculates greater summer PV yield for the student center system (Figure 7(a)), which suggests that the 
PVWatts algorithms do not account for the potential excess heating of PV panels when they are installed on dark 
urban rooftops. This assertion is corroborated by the close agreement between PVWatts and the new method for the 
residential system (Figure 7(b)), which has a lightly colored roof and PV panels that are less affected by temperature 
(Table 3). As explored earlier, PVWatts does not have the capacity to account for urban surroundings, so it performs 
well when modeling systems without many obstructions as in these two examples, but it would not be able to 
accurately model rooftop systems which are shaded by nearby trees or buildings or advise against such systems in an 
urban PV potential modeling exercise. R.sun (purple line) also closely follows the predictions of the new model in 
the nearly flat-roofed context of the student center system. Most existing methods (besides the solar constant and 
Solar Analyst) predict greater summertime yields for the student center system, likely because they do not account 
for high enough summer rooftop temperatures. The results obtained by using Solar Analyst (green line) predict far 
less electrical yield than other models for both PV systems during the winter, resulting in MBD values between -6.2 
and -25.0 percent. For the residential system with its sloped roof, r.sun predicts less energy production in the 
summer than during the winter and results in a nearly constant monthly energy rate. It therefore under-predicts the 
PV potential of the sloped roof with a MBD of -22.9%. Ruiz-Arias et al. (2009) validated r.sun against measured 
estimates of global horizontal irradiation which agrees with results shown in Figure 7(a); however, r.sun seems to 
predict significantly less irradiation than other models under certain sloped-roof conditions. The flat roof methods 
(dashed lines) applied to the residential system (Figure 7(b)) correlate as a group by having similar monthly energy 
yields with the exception of Solar Analyst which again predicts significantly less yield during the winter. As the 
solar constant (grey line) method does not have any built-in mechanisms to track climactic trends, it performs the 
worst in the case of a flat roof system with a RMSD of 34.3 percent, and it performs artificially well in the case the 
peaked residential roof which has a more uniform yield profile throughout the year. 
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Figure 7 Monthly Comparison of Typical Energy Prediction Methods 

 

Table 4 Typical Annual Results and Percent Errors Compared to Detailed DAYSIM Method 

CALCULATION MODEL ANNUAL PV YIELD 
(kWh) 

MONTHLY MBD 

(%) 

MONTHLY RMSD 

(%) 

UNBIASED RMSD 
(%) 

 Student Center PV System 

New method 

PVWatts 

Solar Analyst 

r.sun 

Solar Constant 

9,041 

9,806 

8,477 

9,571 

10,140 

-- 

8.5 

-6.2 

5.9 

12.2 

-- 

11.4 

23.9 

8.4 

34.3 

-- 

7.6 

23.0 

6.0 

32.1 

 Residential PV System 

New method 

New Method (Flat Roof) 

PVWatts 

PVWatts (Flat Roof) 

Solar Analyst 

Solar Analyst (Flat Roof) 

r.sun 

r.sun (Flat Roof) 

Solar Constant 

8,447 

7,527 

8,932 

7,601 

6,486 

6,334 

6,511 

6,717 

7,752 

-- 

-10.9  

5.7 

-10.0 

-23.2 

-25.0 

-22.9 

-20.5 

-8.2 

-- 

20.9 

8.9 

21.9 

27.4 

38.3 

24.4 

26.6 

19.7 

-- 

17.8 

6.8 

19.4 

14.5 

29.0 

14.8 

17.0 

17.9 

 

Methodological Comparison – Urban Context 

The previous section compared different PV yield prediction methods for two Cambridge rooftop systems. In order 
to provide the reader with a more comprehensive feeling as to what these differences mean for a city-wide PV 
potential map, the analysis is expanded to ten randomly selected buildings, which represent the overall building 
stock of Cambridge. Of these ten buildings, five can be described as having flat roofs; however, they often have 
HVAC equipment and other obstructions present on the roof such that they are not truly flat. The other five have 
roofs of some complexity with at least one ridge line. These test buildings are shown in Figure 8. The new method is 
compared to the existing Solar Analyst, r.sun, flat roof and constant value methods. PVWatts is not included in this 
section because it is a web-service relying upon manual user input. As the Solar Analyst, r.sun and constant value 
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methods cannot account for rooftop temperatures or hourly data, a simple 18.5% panel efficiency is assumed for all 
energy yield calculations in this comparison. 

 

Figure 8 Ten Test Buildings Used in Comparing Results 

Table 5 compares annual irradiation predictions using existing methods to the Daysim-based new method. Mean 
irradiation across all points, MBD and RMSD are reported in total and for each geometric type of rooftop identified 
in Figure 8. In Cambridge, an unobstructed flat roof receives approximately 1394 kWh/m2-yr of solar irradiation 
(United States Department of Energy 2012); however, as noted previously, even ‘flat-roofed’ buildings are not 
without obstructions. It is reasonable to wonder how irradiation calculations vary between the methods and common 
assumptions documented in this paper. The flat roof assumption has a positive bias of 26.2% (MBD) when 
compared to irradiation calculations which consider actual rooftop geometry. The solar constant method has an even 
larger bias of 30.3% because it does not account for the urban shading context. These numbers alone suggest that 
proper representation of geometry is extremely important even in simple solar irradiation calculations, and any 
rooftop PV potential mapping effort which assumes that all buildings in the city are flat will have obvious 
inaccuracies. Compared to Daysim’s calculations, Solar Analyst and r.sun underestimate annual irradiation with       
-7.8% and -12.7% MBD respectively. One possible reason for this is that Solar Analyst neglects the reflected 
component of irradiation (Fu and Rich 1999). On the other hand, r.sun is likely to have an inflated reflected 
component because it is based solely on view factor, global horizontal irradiation and ground albedo and does not 
account for shaded portions of the urban context (Šúri and Hofierka 2004); however, as noted previously its model 
neglects significant percentages of diffuse irradiation.  

The large RMSD of the comparison suggests that effects other than calculation bias are at work, and this can be 
explained by the geometric quality of the simulation models at building edges. Figure 9 shows aerial photographs 
and planar projections of the predicted irradiation for a single building using different methods which is typical 
across the ten test buildings. In the process of creating a 3D model of a city, we use building polyline information 
from GIS databases to create extra points which improve the model resolution at the edge of buildings. As Solar 
Analyst and r.sun work across a pure DEM which does not differentiate between building and ground, the calculated 
slope at edge pixels is often extreme and can lead to errors as seen in the upper edge pixels in Figure 9 (Solar 
Analyst). Such errors will increase as the ratio of building perimeter to plan area increases; however, this effect may 
be mitigated by considering building-code mandates of roof edge offsets for PV systems that are not included in this 
study.  

Table 5 Predicted Irradiation MBD and RMSD Compared to Daysim-based Calculations 

Method Mean 
Irrad. 

(kWh/m2) 

Mean 
Irrad. Flat 
(kWh/m2) 

Mean Irrad 
Complex 
(kWh/m2) 

MBD  

Total  

(%) 

MBD  

Flat  

(%) 

MBD  

Complex 
(%) 

RMSD  

Total  

(%) 

RMSD  

Flat  

(%) 

RMSD 
Complex 

(%) 

Daysim 

Solar Analyst 

r.sun 

Flat roof 

Constant 

1070.0 

986.6 

934.0 

1350.1 

1394.0 

1130.0 

1049.0 

987.6 

1362.0 

1394.0 

942.2 

853.5 

820.0 

1324.0 

1394.0 

-- 

-7.8 

-12.7 

26.2 

30.3 

-- 

-7.2 

-12.6 

20.6 

23.4 

-- 

-9.4 

-13.0 

40.5 

48.0 

-- 

31.7 

36.3 

45.8 

49.7 

-- 

32.4 

35.2 

40.4 

43.2 

-- 

29.1 

38.7 

58.8 

65.3 
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To underscore the importance of rooftop geometric accuracy, Figure 10 shows an irradiation map of an urban area in 
Cambridge with detailed roofs and with assumed flat roofs; each image displays detailed irradiation calculations of 
the area using the cumulative sky method (Robinson and Stone 2004). The cumulative sky method uses the 
Radiance reverse raytracer, but under a sky dome which accounts for the solar radiation of every hour in the year. 
Such a result therefore represents the overall radiation on a surface accounting for geometry, shading and 
reflections; however, it is not able to resolve hourly temporal information. From Figure 10, it is clearly visible that a 
flat roof assumption is going to create extreme differences in the results. This is because roof slope will change the 
angle of incident radiation as well as the percent and portion of visible sky. Overall, the flat roof assumption 
overestimates available radiation as there are no roof surfaces that slope to the north, nor are there any surfaces that 
face surrounding buildings; all surfaces are oriented upwards towards the open sky above the building. Further, it is 
impossible for HVAC equipment or roof projections to shade another portion of the roof. The effects of roof 
orientation in the ten test cases are higher than the effects of inter-building shading for a city of predominantly low-
rise buildings such as Cambridge. 

 

Figure 9 Resulting Point Irradiation Maps  For Varying Calculation Methods 

It is useful to further qualify this data into PV electrical yields. A simplified equation of annual irradiation (kWh/m2-
yr) multiplied by panel efficiency (18.5%) and area (m2) is used to calculate the potential electrical yield for this 
section. It therefore constitutes a way to compare the ability of different models to provide decision-making support 
when considering installing new PV installations. Keeping with earlier conventions, methods using flat roof 
assumptions are computed against actual roof areas, although in practice this would not be the case. Using the new 
method, a PV yield of 2,539 MWh/yr was predicted across all rooftops with a combined 10,949 m2 of useful roof 
area. Comparatively, the Solar Analyst method predicted 2,301MWh/yr across 11,041 m2 of useful roof area, and 
r.sun predicted 2,183 MWH/yr with 11,967 m2 of useful roof area. Methods which cannot represent geometry (flat 
roof, constant value) predict that nearly all rooftop area is acceptable for PV installation and have similar increases 
in predicted installation cost. This is documented in Table 6 below which displays total PV production determined 
to be economically useful, the related installation area and predicted installation costs. For this study and for these 
ten buildings, flat roof assumptions lead to an inability to differentiate between suitable and unsuitable areas for 
potential PV installations. The r.sun method, while predicting less overall PV production, also concluded that more 
rooftop areas are useful for PV installations. If such predictions lead to actual PV installations, this would result in 
installation cost increases between 9 and 22 percent compared to the new method. In reality these increases would 
be even larger with the hourly rooftop temperature calculations further reducing PV yield predictions of the new 
method. 

 

Table 6 Simple Annual PV Production, Roof Area and Installation Costs 

Method PV Production 

(MWh/yr) 

Useful Roof Area 
(m2) 

Installed Cost 
(millions USD) 

New method 

Solar Analyst 

r.sun 

Flat roof 

Constant value 

2,539 

2,301 

2,183 

3,323 

3,439 

10,949 

11,041 

11,967 

13,279 

13,336 

11.49 

11.59 

12.56 

13.94 

14.00 
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The new climate-based method of calculating photovoltaic potential constitutes the first time that city-level GIS 
datasets and geometric LiDAR information have been linked to a state of the art, validated daylight simulation tool 
capable of modeling the effects of shading, reflections and climate-based hourly effects. Such an approach offers 
exciting opportunities which point towards a new generation of sustainable urban analysis where detailed GIS 
databases are translated into equally detailed environmental analyses. The results from such analyses can then be fed 
directly back into the GIS models or a display framework to serve as design feedback for policy and decision makers 
as well as property owners. As a further proof of concept, the authors partnered with Modern Development Studio, a 
Boston based architecture and design firm and the City of Cambridge to display results on top of a searchable map 
document using the Google Maps API, a screenshot of which is shown in Figure 11. The online version of the 
Cambridge Solar Map is available via http://www.cambridgema.gov/solar/. The map displays the calculated 
information spatially to map users across their rooftop. Users are also presented with fiscal information in terms of 
economic impacts, NPV, simple payback periods and local rebate incentives. In this way, building owners and 
curious users can engage with the map through the ability to identify their roof specifically and notice how its 
unique form produces varied suitability for photovoltaic installations. Users of the map therefore feel like the 
simulation results are personalized to their building. The authors believe this is important to produce confidence in 
the results and to increase interest in the goals of the map.  

 

Figure 11 Public Rooftop Photovoltaic Potential Map of Cambridge, MA (First Version) 

 

(a) City with Detailed Roof Models (b) City with Flat Roofs 

Figure 10 Annual Irradiation Maps (Cumulative Sky Method) for Varying Degrees of Geometric Accuracy 

http://www.cambridgema.gov/solar/
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To communicate photovoltaic potential effectively, it is necessary to provide useful visual output that aids in the 
understanding of the data. The simulated rooftop solar potential for Cambridge was accordingly divided into four 
bins meant to rank the relative predicted performance of a PV panel installed at that point. The thresholds are based 
on the previously calculated 121 kWh/m2 (11.25 kWh/ft2) energy yield for a ten year NPV payback and were 
calculated such that 15% of the roof area of the city is considered to be ‘Excellent.’ The four bins are defined as 
follows, 

        N/A  <  121.0 kWh/m2-yr (11.3 kWh/ft2-yr)  121.0 (11.3 kWh/ft2-yr)      Poor  <  165.0 kWh/m2-yr (15.3 kWh/ft2-yr)   165.0 (15.3 kWh/ft2-yr)      Good  <  219.0 kWh/m2-yr (20.4 kWh/ft2-yr)   219.0 kWh/m2-yr (20.4 kWh/ft2-yr)   Excellent  

Admittedly, the detailed climate-based method takes more time and processing power to achieve when compared to 
generating a model using the flat roof assumption, PVWatts, Solar Analyst or r.sun. For this study, each building in 
the city took approximately three hours of simulation time using one comprehensive model of Cambridge. This 
model was approximately eighteen square kilometers (7 mi2) and contained 16,547,790 triangular surfaces. Later 
studies tested tiling the model in one kilometer grid cells. With this reduced model size of approximately one million 
triangular surfaces per grid, buildings took five minutes on average to simulate. The simulations can also be run 
fully in parallel to increase calculation speed. The solar constant method is instantaneous, and PVWatts relies upon 
external processing power. Esri’s Solar Analyst tool and r.sun are also substantially faster; therefore the reader 
should ask, what benefits can be expected from using this new method? The previously demonstrated increase in 
predictive accuracy is only part of the answer to such a query.  

In the authors’ opinion there is equally increased value in having a full 3D model of a city. Foremost, detailed 
rooftop area information is available for quantifying useful rooftop area and the total incident irradiation (kWh) used 
in the energy generation equations. Such a model also provides opportunities to investigate wall mounted PV, and 
subsets of the model can easily be extracted to support further analysis by design teams or government entities that 
make policy. Solar installers may also benefit from having three-dimensional data for analysis in lieu of a site visit. 
Figure 10 illustrates the utility of this model in analyzing the solar potential of building walls. It shows that building 
walls annually receive between 200 and 1,200 kWh/m2-yr of solar irradiation. Using a simple calculation of an 
efficiency factor  18.5%  multiplied by irradiation, results in predicted photovoltaic energy production of between 
37 and 222 kWh/m2-yr. This means that some exposed building walls have the capacity of being ranked ‘good’ or 
‘excellent’ for potential PV installations by the above criteria. Using the validated Daysim software provides 
additional confidence in the simulation results as it considers typical climate-based weather information, shading 
and reflections. As discussed, Daysim also provides access to hourly calculated irradiation data which facilitates the 
use of detailed equations of PV yield that consider hourly temperature predictions. Such hourly data can be used in 
policy analysis applications to help offset the peak loads of specific cities, areas or building types. For building 
owners who have a demand pricing arrangement, hourly predictive data is especially useful in reducing annual 
electricity costs. Demand pricing is an arrangement with an energy provider where the pricing structure for the 
entire year is determined based on peak usage. In such cases, it makes sense to optimize PV panel placement 
specifically for peak reduction using hourly or sub-hourly data. 

Limitations of New Method 

Beyond what was discussed previously, the new method has several limitations. Currently all PV panels are 
modeled as coincident with the roof; however, it is often the case that flat roofed buildings have PV panels installed 
at a 45 degree tilt towards the South using standardized angle brackets. Future solar maps should therefore consider 
an additional visualization layer with new simulation data analyzing potential photovoltaic installations tilted 
towards the South in this manner. Further, while the method produces reasonably accurate roof forms, it should be 
noted that LiDAR data and our point-simplifying method introduce errors in some buildings. A newer version of the 
map being produced uses finer resampling of the LiDAR data which results in significant improvements in 
geometric accuracy.  

Others (Jochem et al. 2009, Levinson et al. 2009 and Lukač et al. 2012) have modeled the light passing through 
vegetation by using either fixed transmissivity percentages for the vegetative components of a DEM or through 
time-varying methods which account for the seasonality of leaf density. While our model does not currently 
implement such analysis, the Daysim software is capable of modeling time-varying object transmissivity by 
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changing physically-based material definitions during different times of the year. One limitation to implementing 
this over a large urban area such as a city or region is that existing GIS datasets rarely differentiate between 
deciduous and evergreen trees. Lukač et al. further note that surveying such information is only possible for small 
study regions. As GIS databases and remote sensing improve, modeling each tree explicitly will become possible. 

 

CONCLUSION AND OUTLOOK 

We have found that using a detailed Daysim reverse raytracing simulation at the scale of the city is feasible and 
produces reliable results. The new method employs detailed sky models based on measured climate data, considers 
reflections from the urban surroundings and includes an hourly rooftop temperature model. The capability of 
Daysim to accurately predict urban irradiation and the presented method to transform that irradiation into accurate 
PV energy yields is confirmed by a strong agreement between simulated and measured energy production at two PV 
installations in Cambridge where annual errors ranged from 3.6-5.3%. This error range was found to be smaller than 
variations in predicted electricity generation between separate years from 2008 to 2011. 

Energy production predicted using the new method is often less than currently available maps would calculate for 
equivalent theoretical PV systems due to the urban rooftop temperature-based efficiency model. A validation study 
of a system located on the MIT student center building comparing panels nearly coincident with a roof surface 
suggests an average decrease in energy generation of 18.3% during the sunlit hours of a hot summer week through 
this effect and a peak decrease of 36.7% when the panel temperature is highest. 

To validate irradiation models and predictions of photovoltaic energy generation at the urban scale is a new effort. 
We believe that in the future, such models will support policy decisions as they allow the ability to predict hourly 
peak-load reduction at the scale of a city or among a group of buildings whereas previous methods have not had this 
benefit. With increased model quality and certainty about results that can be – at least partially – visually assessed, 
the authors aim to increase public engagement with sustainable technologies.  
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