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Abstract

In this paper we present, demonstrate and validate a method for predicting city-wide electricity gains from
photovoltaic panels based on detailed 3D urban massing models combined with Daysim-based hourly
irradiation simulations, typical meteorological year climactic data and hourly calculated rooftop
temperatures. The resulting data can be combined with online mapping technologies and search engines
as well as a financial module that provides building owners interested in installing a photovoltaic system
on their rooftop with meaningful data regarding spatial placement, system size, installation costs and
financial payback. As a proof of concept, a photovoltaic potential map for the city of Cambridge,
Massachusetts, USA, consisting of over 17,000 rooftops has been implemented as of September 2012.

The new method constitutes the first linking of increasingly available GIS and LiDAR urban datasets with
the validated building performance simulation engine Daysim, thus-far used primarily at the scale of
individual buildings or small urban neighborhoods. A comparison of the new method with its
predecessors reveals significant benefits as it produces hourly point irradiation data, supports better
geometric accuracy, considers reflections from neareby urban context and uses predicted rooftop
temperatures to calculate hourly PV efficiency. A validation study of measured and simulated electricity
yields from two rooftop PV installations in Cambridge shows that the new method is able to predict
annual electricity gains within 3.6 to 5.3% of measured production when calibrating for actual weather
data and detailed PV panel geometry. This predicted annual error using the new method is shown to be
less than the variance which can be expected from climactic variation between years. Furthermore,
because the new method generates hourly data, it can be applied to peak load mitigation studies at the
urban level. This study also compares predicted monthly energy yields using the new method to those of
preceding methods for the two validated test installations and on an annual basis for ten buildings selected
randomly from the Cambridge dataset.
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INTRODUCTION

As our knowledge of how to technically make individual buildings neorergy efficient matures, the challenges to
accomplish widespread adoption of energy saving measures are nghaRgr individual building owners,
implementing energy efficiency measures has become primarily a ques$tabtaining meaningful information
regarding installation costs, potential energy savings and payback tintasdém with our advances in building
technology, cities in many countries now command unprecedented access to data of their jurisdiction’s building
stock which can be further analyzed and mapped to inform policyiateid/Nithin this context, it has become
increasingly popular for cities and municipalities to create ‘solar potential maps’ with the intent of promoting
renewable energy generation through photovoltaic (PV) panel installations thighirjurisdictions. In the United
States, larger cities such as Boston, Los Angeles, New York City and Ponttarideponline maps which allow

building owners to look up their address and view personalized predistiohss,

e electric production from a PV system (kWh)

e energy savings from a solar hot water (SHW) system (therms)

e resulting annual electricity savings (dollars)

e carbon savings (Ibs)

o useful roof area for installing PV panels (sq. ft.)

e system payback period (years)

e system costs (dollars)

¢ |ocal rebates and incentive programs (dollars savings)

Table 1 Survey of Existing Solar Potential Mapping Methods in Narthrica

CITY URL FLAT ROOF | METHOD (2012) | METHOD (2013)
Anaheim http://anaheim.solarmap.org/ No Solar Analyst Unknown
Berkeley http://berkeley.solarmap.org/ Yes Constant Unknown
Boston http://gis.cityofboston.gov/SolarBoston/ Yes Solar Analyst Solar Analyst
Denver http://solarmap.drcog.org/ No Unknown PVWatts
Los Angeles http://solarmap.lacounty.gov/ No Unknown Unknown
Madison http://solarmap.cityofmadison.com/madisut No Constant PVWatts
New York City | http://nycsolarmap.com/ No Solar Analyst PVWatts
Portland http://oregon.cleanenergymap.com/ Yes Constant No longer exists
Salt Lake City | http://www.slcgovsolar.com/ No Solar Analyst Unknown
San Diego http://sd.solarmap.org/solar/index.php ? Unknown Unknown
San Francisco | http:/sf.solarmap.org/ Yes Constant Constant
Sacramento http://smud.solarmap.org/ No -- Unknown
Orlando http://gis.ouc.com/solarmap/index.html No -- Unknown
Various http://www.geostellar.com/ No -- Unknown

The objective of these maps and accompanying personalized profenyation is to increase the environmental
awareness of residents, reduce greenhouse gas emissions an@ve it sustainable image of a city through the
expansion of solar energy technology. While a number of cities havealgemerated such solar maps, to the
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authors’ knowledge, limited attention has been paid to the assumptions and calculation methods underlying these
maps. This paper is organized as followstially a survey is conducted of existing solar potential maps in the
United States as well as of existing research. The underlying methodologiet ysedttice and research are
discussed in detaiWe then present a new method of how a validated solar radiation calculatiathalgthus far
typically used at the individual building scale, can be combined withcamly rooftop temperature model and
applied to a city-sized model of Cambridge, Massachusetts, USA. The noetladels city-wide solar potential maps
with a high degree of spatial and predictive accuracy based on the genefratibigh resolution three-dimensional
(3D) model sourced from available geographic information systems (fat&)As a validation of the new methpd
hourly and daily energy yields from two actual operating PMesys are compared against the n@ethod’s
predictions using calibrated weather data. Next, results from the newdr@n@ompared with those one would
obtain using existing methodBinally, we discuss what relevance varying simulation results may hdnathathe
individual building owner and city-wide policy level using ten sample mgkifrom the Cambridge building stack

The authors conducted a review of solar potential maps for North Americam (@iible 1). In March of 2012,
eleven maps were surveyed, and one year later thirteen maps were siWveyednd that there are three typical
predictive methodologies in place for calculating rooftop irradiation and associateyghaic potentialln 2012,
three 7% of the surveyed maps used a constant assumption for solar irradesditing a building rooftqp
defined in the following paragrapne ©%) reported using the National Renewable Energy Laboratory’s (NREL)
PVWatts calculation module (Marion, et al. 2004hother five #5%) used the Solar Analyst plugin WithEsri’'s
ArcGIS program (Fu and Rich 1999)he remaining maps did not report their calculation methodology. 18,20
two maps switched to PVWatts as their prediction method, raising its ts&$9 of available North American
solar potential maps. Simultaneously maps reporting using Solar Anabygtedt to just one (7.7%). In reality, the
picture this paints is a skewed one. Of the thirteen maps surveyed sihichkxist, 3% (Anaheim, Denver,
Madison, Sacramento and Orlando) require manual input of slope, azimditeystem size. These maps do not
automatically map solar potential, but they often have accompanying raepéiicgr of sunlit hours to help users
define their systems.

Outside of already existing solar potential maps, there are several methiotishave emerged from research.
R.sun Sari and Hofierka 2004) has been used to map solar potential for largegkiogareas and cities, buthits
not, to the author’s knowledge, been used in city-scale public solar potential mapping applicatdnsas those
detailed in Table 1. PV Analyst (Choi et al. 20IRY-GIS Suri, Huld and Dunlo2005 and a series of other solar
irradiation and photovoltaic calculation methods and case studies are also disctissgaddoeeding paragraphs

Solar potential maps using a constant assumption simply predict that everryp a rooftop receives the same
amount of solar irradiation irrespective of orientation and surroundinggxtotysually this value is derived from
annual global horizontal irradiation measurements from a nearby evestdtion. Such use of a constant, solar
radiation value across a rooftop will be inaccurate in many cases, fopkxauildings with peaked roofs where
each surface of the roof is oriented towards a different sectior akihThe use of a constant value atimes not
consider local urban context such as trees and neighboring buildithgdy shade building rooftops. Those who
employ this approach determine the useful roof area for PV installatiomsing either a constant percentage
(Oregon Clean Energy Map 2012) or based on orthophotographie iameagdysis techniques (San Francisco Solar
Map 2012 and Berkeley Solar Map 2012).

The NREL PVWatts web service usasonsiderably more detailed method (Marion, et al. 2001) in which hourly
solar irradiation is distributed on a 40km square grid for the entire UBitgds based on the typical meteorological
year 2 (TMY), dataset (Marion et al. 2001). Local TMY2 irradiation datsséxl in combination wita manually
input DC power rating, PV panel tilt and orientation as well as model-derivesl famperature conditions and
climate-based sky models to determine energy production. While roof shiapatésl with greater detail than in a
solar constant approach, shading and reflections from adjacent urfanes also cannot be modeled using
PVWatts. This suggests limited applicability in dense urban areas wherengsiilthd trees may shade future PV
panelsPVWatts has been validated by Cameron, Boyson and Riley (2008) measured data from an unshaded,
rack-mounted system. It was shown that PVWatts is accurate withesagavbias between 9.6 to 10.2%. However,
an interface such as PVWatts is difficult to automate for an entire city asreeérsurface with a differing slope
and azimuth must be input separately. The New York City Solar Ma8J2automates this practice, but all other
existing maps using PVWatts do not.
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Esri’s Solar Analyst plugin represents the city as a digital elevation model (DEM). A DEM is a geolocated raster
image where the values of individual pixels correspond to elevatioruneeasnts. A sky mask is initially generated
based on the surrounding pixel values for each pixel in the DBEMct and diffuse components of irradiation are
calculated based on the amount of the sky which can be seen frorpiealciDirect irradiation is calculatedh i
accordance with the sun position, the slope of the DEM, a fixed skyntissivity coefficient, and the distance a
solar ray must travel through the atmosphere. Diffuse irradiation islat@dun much the same way as the direct
component, based on either a uniform sky model or a standard a¢veaocked; however, no solar map reports on its
website which sky model was used. As Solar Analyst uses only magly based on a DEM, it has no capacity to
model reflected radiation from neighboring buildings, surrounttiegs or the urban terrain. It has been proposed to
assume a directional constant of reflected irradiation for obscured sky Riehsdt al. 1994), but it would be
inadequate to consider complex reflections from surrounding buildingslaaddcape. In Solar Analyst, sky
transmissivity and the ratio between direct and diffuse insolation ad, foonstant values throughout the year.
These assumptions can have significant impact on calculated amadétion. For example, the Boston Logan
TMY3 weather data illustrates a ratio between direct and diffuse irradiation whieb waglely throughout the year
(US Department of Energy 2012). Figure 1 displays diffuse horizrddiation versus direct horizontal irradiation
from this data. Points are shaded based on the observed cloud covehatith@ihe mean dire¢b-diffuse ratio of
insolation for Boston is 64%; however, the standard deviation from the i:184%, and neglecting this variance is
obviously incorrect. The reader may for example imagine a site petiominantly clear skies in the morning and
cloudy afternoons. For that site an east-facing surface receivederalbdy more solar radiation than its west-facing
counterpart, a climatspecific idiosyncrasy that Solar Analyst cannot resolve.
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Figure 1 Hourly Direct and Diffuse Radiation and Cloud Cover fBaston Logan TMY3 Weather Data

R.sun Buri and Hofierka 2004) is a model implemented in the open source GRASSGgram (GRASS
Dewelopment TeanR013 which resolves perceived limitations noted in the Solar Analyst model. Or@ maj
difference compared to Solar Analyst is that r.sun has the ability to nioeledolar insolation of very large
geographic areas which transcend several differing climate zones by s$hé#ingercent of direct and diffuse
irradiation as spatially resolved raster images rather than as fixed valuesSakirAnalyst. A second notable
difference is that r.sun makes a provision for ground reflextéat irradiation; howeveits model assumes that all
ground reflection is accounted for by surface inclination, global hdaroradiation and ground albedo which does
not account for shaded or unshaded portions of ground nor thal @eometry of its contexiWhile r.sun is
deployable across geolocated raster DEMs, it has significant limitations in usabilitye fourpose of annual city-
scale photovoltaic potential maps. The first limitation is that r.sun is opgbta of modeling a single day or hour
of irradiation at a time. This means that a detailed annual calculation requires at least@6&sults images to be
created and processed independently. A second limitation is that dirediffase percentages of irradiation can
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only be set as raster image inputs and not as fixed values meatifgy ttnodeling a small geographic area such as

a city, it is inconvenient to model climactic effects. To model the typicay dhianges from a source such as a
weather file, it is necessary to create separaam and diffuse percentage raster images for every day in the year.
To consider typical hourly changes, as in the case of the exalmple where a city has clear mornings and cloudy
afternoons, raster images need to be created for every hour in thi igeappropriate to mention here than GRASS
has a powerful scripting engine which can help in managing this task.

Besides the methods discussed in the preceding paragraphs, manyhatieedocumented their process towards
analyzing photovoltaic potential in cities and neighborhoods usingd&sand various simulation prograrRd/-

GIS Suri, Huld and Dunlop 2005) is a web-based tool similar to PVWatts supporting African and European
analysis which uses calculations from r.sun modified by measurect dnd diffuse monthly average irradiation
raster images as its underlying weather data source. PV Analyst (Cha2@tBl.coupled TRNSYS simulations of
photovoltaic panels with a DEM in Esri’s ArcMap tool, suggesting a desire for the application of validated
algorithms in solar potential modeling; however, the tool is yet to be eele®Y Analyst relies on Solar Analyst

for shading calculations and TRNSYS for irradiation and PV vyield calculatioher©fBrito et al2011, Nguyen

and Pearce 2010, Nguyen and Pearce 2012), have used meetlalgeal beam and diffuse solar data with r. sun to
calculate photovoltaic potential of relatively small urban developments. Hofietkd&amuk (2008) perform the
same without noting how climate is accounted for. However, r.aamtostly been applied to very large areas such
as Europe and AfricaS(ri, Huld and Dunlop 2005, Bergamasco and Asinari 2QHuld, Miiller, and Gambardella
2012, Ruiz-Arias 2012Palmas et al. 2012), aiits raster-based input methods suggest the tool is most appropriate
for large geographic arealukac et al. (2012) calculated direct and diffuse irradiation based on measured climate
data, roof slope and aspect and overshadowing potential from neighbaildings and landscape. Schallenberg-
Rodriguez (2013) eschews using a simulation engine at all by sugg#siingpr regional feasibility studies,
relatively simple spreadsheet calculations are adequate; however, for splgiallgd building-rooftop analysis,
such calculations are not capable of accounting for shading fronxtgaltgeometry or detailed resolutions of roof
shape.

Geometric and Material Assumptions

Of the surveyed solar potential mafsur (28.6%) assume that all buildings in the citydflat roofs at a known
elevation, four (28.6%) used a detailed DEM, five (35.7%) relied on uset topepresent the roof slope and
aspect, and the remaining map did not report its assumptions. Of cities gitttignflat roof assumption, half
assumed that a fixed percentage of the roof is suitable for PV (Bésidrand). The others relied on a proprietary
orthophotograpie image analysis method for locating rooftop obstructions (Berk&8lag FranciscoMaps using
DEMs determine useful roof area either by the predicted rooftop irradiatiday the number of daylit hours
observed in a year. The effect on simulation results of assuming ediatre discussed later in the paper.

The source height measurements for DEMs often come from LiDAGRt Detection And Ranging. LIDAR is an
established, accurate measurement system wherein a surveying aircraft ethlesesgursts and records the time
until their visual return while tracking its location via Global Positioniggt&nms (GPS). The collected location and
timed return data is later processed into geographically located point dataaityatiDAR is the most accurate
way to measure an entire urban area, including detailed roof foradhntaadscape. The majority of detailed solar
potential surveys of urban areas use LIDAR point measurementsstruaimg digital elevation models to use as
input to solar irradiance calculations (Brito et al. 2011, Nguyen and Pe@id: Riguyen and Pearce 2012
Yimprayoon and Navvab 201Dpka¢ et al. 2012MadiSUN 2012, Geostellar 2013)

None of the surveyed cities or research methods discussed in this serboy a method which considers
physically accurate reflections from urban context.

METHODOLOGY
LiDAR Data, Accuracy, and the Construction of a Detailed Three-Dimensional M odel

The authors’ implementation of an urban solar potential map is based on the creatialetailad 3D model in the
validated Radiance / Daysim backward-raytracing daylight simulation en@Werd 1995, Reinhart an
Walkenhorst 2001). The advantages of creating an actual 3D representatiercity compared to a DEM are that
roof surfaces can be properly modeled as smooth sloping planesthathex pixelated height representation and
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that accurate reverse-raytracing simulations can be implemented that accaefleéions and shading from the

surrounding context. The geometric information used in creatin§Bhmodel of Cambridge comes from a 2010
LiDAR survey of the city. The vertical accuracy of the data in the urbatexibof Cambridge was bounded to less
than 1m root-mean-square error (RMSE). In validation tests of seleatad #re RMSE between LIDAR and

traditional GPS measurement methods was shown to be 0.062m (Allkargestainable Energy 2010).

The employed process of creating a detailed 3D urban model is illustrittedn example surrounding the Kresge
Oval at the Massachusetts Institute of Technology in Figure 2. As Li@s&& is not uniformly sampled in plan, it
creates an awkward data space (Figure 2(b)) where different point deastipesent depending on the airplane
path of flight. Initially, there were 126,624,764 points spreadsacitCambridge, which has a total area of
approximately 18.5 km(4,500 acres). We uniformly resampled the LiDAR data over a plarofjegproximately
1.25x1.25m (4’x4’) spacing, taking the mean of the first return data where multiple pointedexResulting
neighboring points which did not vary by greater than 0.3 metenscally were discarded. This resulted in a
simplification of the data space to a mere 9,403,750 points withonglasich geometric resolution. The simplified
LiDAR-derived points were then divided into two categories using pyldichilable GIS datasets from the City of
Cambridge: buildings and ground scape (Figure 2(c)) (City of @dg#2004). As a final step, the two groups of
points were triangulated using a Delaunay algorithm (Figure 2(d)), resintiachighly accurate and detailed 3D
model of the entire City of Cambridge that consists of 16,58&T@gular surfaces.

(c) Resampled and categorized LIiDAR points (d) Resulting 3D model

Figure 2 Process Images of 3D Model Generation from LIDAR and GIS Data
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Hourly Simulationswith Radiance/Daysim

The triangulated surface model was then converted into the Radiance backytacer format. In Radiance each
surface may have different, highly customized, optical surfaceepiieg Inthe authors’ model it is assumed that
building walls are Lambertian diffusers with a 35% reflectance while th®wding landscape has a diffuse
reflectance of 20%. Rooftop reflectances and absorptivities were calibrated baséarmation from the City of
Cambridge Tax Assessor’s Database for roofing material (City of Cambridge 2011). Annual irradiation was then
calculated on each building roof surface at a grid resolution of 1/Bx{%5’). Simulation sensor points are
located approximately 0.5mnh/64”) above and facing in the normal direction of the roof surface.

Simulations are performed with Daysim, a validated fork of the Radiawcgagon that uses a daylight coefficient
approach (Mardaljevic 2000) and the Perez all-weather sky model (Peralz,18093) to predict annual point
illumination and irradiation while considering climate-specific data (Daysim 2@aysim works by performing
one raytrace operation to a sky dome consisting of 145 diffuseeghyents, 3 ground segments and a second
raytracing run with approximately 65 direct solar positions that areibditgd along the annual solar path. By
tracing backwards from the simulation sensor points, each skyes¢@md solar position is then weighed relative to
its contributions to each point in the scene. In this manner, irradiegiorbe simulated for an entire year in any
incremental time step without running thousands of separate agtthyfenaytracing calculations while considering
measured typical climate information, contextual shading and reflections basgedietailed three-dimensional
geometric modelln the author’s study, irradiation simulations were performed at an hourly timestefaysim has
been shown by many studies to be highly accurate in modelindewis#tvelength natural light in diverse climates
and sky conditions (Reinhart and Walkenh@®@01, Reinhart and Andersen 2006, and Reinhart and Breton, 2008
Jakubiec and Reinhart 2013). Ibarra and Reint2011) compared Daysim predictions of irradiation against a
measured dataset and showed that Daysim is able to accurately resolve tempatiahs in longwave solar
irradiation in urban contexts.

Table 2 documents the Daysim simulation parameters used in the asgtharstion in order to ensure simulation
accuracy. Parameters were primarily considered in relation to the unusugdlysiae of the Cambridge model.
Errors in the ambient calculation were calibrated to be acceptable for susfeoesl four feet apart and larger. As
the model was resampled at this resolution in plan and simulation seir#srgre spaced beyond this threshold, the
assumption seems reasonable. According to Ward, error will “increase on surfaces spaced closer than the scene size
divided by the ambient resolutidiiRtrace man page 201 2I'hus the Radiance scene size of 26,5%6dvided by
four gives an ambient resolution of approximately 6,750. Tidarma that ambient interpolation is unlikely to occur
across separate triangles in the scene which may have different orierdatioslar condtions. Ambient divisions
are set at 2048 such that for each sensor point and ray reflectionr@@t&re cast to sample the ambient
environmental conditions. In essence, the model accounts for any geavhiinyoccupies a perceived solid angle
larger than 0.0031 sr. Direct contribution is sampled deterministicatlyedch ray reflection. The simulation
considers up to two ambient reflections from direct solar irradiation aededlection from diffuse sky irradiation
from the environment (ambient bounces, ab).

Table 2 Key Radiance/DAYSIM Simulation Parameters

PARAMETER DESCRIPTION VALUE
ab ambient bounces 2
ad ambient divisions 2048
as ambient super-samples 16
ar ambient resolution 6750
aa ambient accuracy 0.1

Calculation of Photovoltaic Yield

As previously discussed, a key benefit of the new method is direessto hourly simulated irradiation data and
the detailed Perez sky model that approximates actual sky radiance distriboti@asHh hourly time step in the
year. Knowing in addition the explicit area beneath each simulatedgramrinformation about the urban climate, a
reasonable calculation can be made for the performance of a PV panetla@icantext.

A method for predicting city-wide electric production from photovolfzanels based on LiDAR and GIS data Page 7 of 2
combined with hourly DAYSIM simulations
Jékubiec, J. A. & Reinhart, C.F2013



A direction vector is assigned to each simulation sensor point bastt cnormal direction of the roof surface
immediately below it. Assuming that the roof is planar and unvarying blearea the point represents, ~125m
this case, a method of calculating the area is shown in Equationitluatrdted in Figure 3, wherg is the unitized
roof surface normal vector.

A
flat

Appoi = —————= 1
prol—fo o 1]-7 @

(< E)
Tsot—air = Tamb-air + A (2

c

(Ty — 20°C) + E
Te = Tsot—air + oy T ®)
Pmp = Ompo * [1 tTy* (TC - To)] (4)

Figure 3 lllustration of the geometric terms in Equation 1

PV performance is dependant on many factors which are unknowe &t of making a conceptualadiation
map such as module efficiency, panel orientation, wiring and equipmaémantainance conditions. However, it is
known that high ambient temperature and solar radiation heating upnbewilh have an adverse effect on its
production. Furthermore, air temperatures near urban rooftops wilgbhertthan the ambient air temperature due to
the effects of solar radiation; therefore, the sol-air temperature istasggproximate this phenomenon, shown in
Equation 2. The sol-air temperature is the urban ambient tempe(@iurair °C) plus the absorptivity of the roof
(«, percent) multiplied by the incident irradiation (E, Vinand divided by a convective and radiative loss factor
(h., Wm?K) which we assume to be a constant 15 ¥ In the model, rooftop absorptivity is estimated per
building based on roof type data in the Cambridge Tax Assessor’s database (City of Cambridge 2011)The sol-air
temperature is used to predict panel temperatures in Equation 3 by rtgdgimginowledge of the nominal operating
cell temperaturat Nominal Operating Cell Temperatuf€,) (Luque and Hegedus 2011). Further, the photovoltaic
maximum power at ideal conditiong,(,,, W) can be derated based on a temperature correction factes/ )
(Equation 4) (Marion, et al. 2001). The temperature correction factsuely provided by PV panel manufacturers
with panel specification informatioiuld et al. (2006) predietl monthly average temperature profiles of Europe to
use in calculating PV efficiency reductions. Their results were implemeantad PV-GIS web service; however, an
annual efficiency reduction factor was used. In the authww method, it is possible to resolve this efficiency loss
on an hourly basis

Equations 14 are used as a first-order approximation in derating panel efficiency basedlient air temperature
and point irradiation at each hourly timestep.

Deter mination of Useful Rooftop Area

Useful rooftop area in the model is calculated based on the predicted econdifititfeaf panels installed at a
location. Any roof surface sloping greater than 60 degrees (6#&#)dicarded and instead considered to be a
vertical surface or wall. The reader should note that this cutoff was #rarichoice and the method itself would
also be capable of modelling facade integrated photovoltaics by generatingismagatsors on such wall surfaces.
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No rooftop setbackvas considered in this study; therefore, useful rooftop area can ext¢he éolge of the roof
surface.

According to the Massachusetts Clean Energy Center, in 2011 theearfagstallation costs were $5.67 per watt
in Cambridge (MassCEC, 2012). Assuming a typical panel that is rat@85&v/nf (17.2 W/ff) (Sunpower
E18/230W 2012), the installation cost follows to be $1049.7q#87.52/ff). The 2012 Cambridge cost of
electricity for residential customers was $0.15/kWh whigHixed for the duration of the financial analysis
Requiring a ten year investment period with a ten percent discount rategpef 244.9 kWh/fayr (115.7 kWh/ft-

yr) would have to be generated to have a net present value (NPV) in Waitivéstment breaks even, when NPV
equals zero. An ideally oriented solar panel in Cambridge receives approyira6l kWh/ri-yr (149 kWh/ft%-yr)

of solar irradiation annually and would hence require a panel efficienegasfy 80% in Cambridge for the system
to break even in ten years. If one only required a simple payba&cklm/same 10 year period, the panel efficiency
would still need to be nearly 50%.

National and state rebate programs that exist to improve the econonilidlifgas PV for residential properties
seriously change the financial outlook of such installationsOlk2 2he US federal government offdra 30% tax
rebate on the cost of a PV installation (Energy Improvement and ExtefstoR008). Further, Massachusetts
offered a 15% rebate up to a maximum of $1,000 that could be carriedonvbree years (Residential Renewable
Energy Income Tax Credit 1979Jhe Massachusetts Clean Energy Center offered a minimum $0.404f¢ @b
new PV systems (MassCEC 2012). Massachusetts alsed##ear00% protection from increased property taxes due
to PV installations for a 20 year period (Renewable Energy PropertyEXamption 1975) Finally, Solar
Renewable Energy Certificates (SRECSs) are ways of trading proehefating sustainable energy as a commodity.
The ‘floor’price of these commodities is currently valued at 285kWh (DSIRESOLAR 2012)Factoring these
rebates and incentives into the previous NPV calculation, it is possible t@ hmeak even point for an unshaded
panel at 5% efficiency without accounting for future energy prices or PV panealedation This means that
considering an investment period of 10 yearsaioexample Sunpower panel, any point which has the capacity to
generate over 121 kWhfmil1.25 kWh/ff) of energy per year is likely to recoup its value while providirgjtamhal
savings after the initial 10 year period as the effective lifetime of a R&rsyis known to be typically greater than
30 years. Thus such points and their associated roof areas are ezhsidee useful to install PV panels. As the
point-based simulation results from this study are displayed spatiallye@dés section), it is possible to determine
optimal placement locations for PV panels coincident with urban rooftops

Geolocation of Data From GISto Radiance Simulation Models

All GIS models including the LIDAR data and building footprints were caottd in the projected North American
Datum 1983, Massachusetts State Plane Mainland coordinates system (Schwavadnd990). This is a
serendipitous choice as distances and areas can still be measured witkgsitating geographic corrections. Thus,
the Radiance/Daysim simulation model was built in an identical coordinate syEtenMassachusetts State Plane
system also has a known relationship between X and Y coordinates ane latituitbngitude global coordinates. It
is possible to translate easily between the two coordinate systense lmf an Inverse Lambert Conformal Conic
Projection with proper geospatial parameters.

RESULTS AND DISCUSSDN

Comparison of Predictionsand Measured Data

The new method was validated against measured energy productionwioomstalled photovoltaic systems in
Cambridge. One system is located on the MIT carytudent center building, and the other on a private residence
For each system, hourly measured energy production is compdredrtp predicted energy production. The reader
should note that this hourly comparison is only conducted wétmétwv method since most previous methods cannot
predict hourly electricity yields and cannot be reasonably calibrated tmsigam hourly weather data

The first of the two systems is a 7.2 kW system installed emabf of the student center, and the second is a 5.9
kW system in a dense residential area of Cambridge. The studeeit sgstem consists of 24 Schott 300W panels
that were installed approximately nine years ago. The residential systeistcof30 Sanyo B5W panels that are
two years old. Detailed information for both systems is contained ite Tatbelow, and Figure 4 shows the
simulation models used in the validation. Both of the models include the detailedinding urban context and
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accurate representations of the photovoltaic panels being compared to. Em: studer system is installed nearly
flat with a panel tilt of 5 degrees while the residential system is instafiesl peaked roof which has a tilt of 50
degrees. The student center system is primarily unshaded bytiestzdowever, trees and a chimney shade small
portions of the residential system during some times of the yeasumesat. Furthermore, the student center system
has a black asphalt roof while its residential counterpart has a light colored heofalues reported in Table 3 for
rooftop absorptivity were estimated based on visual observaB@tause the two models are very different in
terms of orientation, geometry and roof color, we suggest that timsgitabe a reasonable sample of common urban

conditions against which to test the new method.

Table 3 System Parameters of Selected PV System

Panel Azimuth
Inverter Efficiency
Panel Age
Estimated Rooftop Absorptivity

22 degrees East of South
94 %

9 years

0.9

PARAMETER STUDENT CENTER RESIDENCE
Panel Count 24 30
PV Model Schott ASE300-DGF/50 Sanyo HIP-195BA19
Efficiency at Ideal Conditions 123 % 16.8%
Power at 1,000 W/f25°C (R0 300 W 195W
Temperature Correction Factor (y) 0.47 % / °K 0.348% / °K
Panel Tilt 5 degrees 50 degrees

3 degrees West of South
96%

2 years

0.35

f
N

(a) Student Center Simulation Model

(b) Residence Simulation Model

Figure 4 Detailed Building Simulation Models in Urban Context

A method for predicting city-wide electric production from photovolfznels based on LIiDAR and GIS data

combined with hourly DAYSIM simulations
Je&kubiec, J. A. & Reinhart, C.F2013




Validation Procedure

In order to compare measured PV energy yields to simulated predictio@s, itecessary to use weather data from
the period of measurement. For this purpose, global horizontal solaiatioadand ambient air temperature
measurements at 15 minute intervals were acquired from a weather sgapi@ximately 0.6 miles (1km) away
from the MIT campus for the period of July 202une 2012 (Cambridge, Massachusetts We&@0&P. These
were averaged into hourly values, and the resulting global horizontal seldiafion was converted into direct
normal and diffuse horizontal components using the Reindl mRieihdl et al. 1990). Further, the known
information in Table 3 regarding the two PV panel systems was eetplioy calculating the resulting energy
production using the same procedure as explained in the methodetdignsPanel efficiency was further reduced
by a factor of 0.5% per year of operation as has been shown typtbal studies of King and Quintana (King et al.
199, Quintana et aR002. For example, the nine year old student center PV system isebty a factor of 4.5%
as it is nine years old such that the calculati@B% * (1.0 — 9yrs * 0.005%/yr) results in a reduced base
efficiency of 11.75%. Detailed geometric models of the panel systems werelyigidatructed to remove
geometric differences as factors in the comparison.

Typical Summer and Winter Week Hourly Simulation Results

Figure 5 illustrates typical summer and winter weeks of hourly measudesiranlated data for both analyzed PV
installations. The residential system does not have winter week informatioerasvéts systematic missing and
shifted data for that portion of the year. The solid black lines represeasured energy generation while the red
lines indicate predicted energy generation by our model using the preditesd teonperature. The black dotted
lines show predicted energy generation using the ambient urban air tempé¥igtures 5(a) and 5(b) show results
for the student center system. 5(a) illustrates a summer weelt2n 20r this week, measured and predicted energy
values are very similar with a RMSE which is 4.4% of the rated sységmacity during daylit hours. 5(b) shows
similar results during th011 winter with a RMSE equating to 4.7% of the system capacity durgtdours.
5(c) illustrates a typical summer week of the residential PV system. Its RM@kg daylit hours is 7% of the
rated system capacity. Overall, the good agreement between simulatite aesl measured data suggests that the
new method is capable of accurately representing temporal changes in Pluyiefflhot and cold periods of the
year.

An interesting observation is that the effect of high rooftop tempesatarvery strong during hot Summer days in
Cambridge especially for the unshaded student center system located on the darittocdn estimated
absorptivity of 0.9Figure 5(a) shows that the predicted energy using ambient tempetdaale dotted line) varies
from the measured and predicted energy values (solid black and es}l fiim the student center by on average
18.3% during the summer week. The maximum deviation during #me gime is 36.7% on 7/3. Figure 5(c),
displaying the residentiadystem’s PV yields, reports a weaker temperature effect because its panels are less
sensitive to changes in temperature (see temperature correation (f) in Table 3), and the rooftop of the
residential system is clad in a lighter colored material having an estimated alityooptd;35. During the winter,
the ambient temperature is cold enough that it is a rare occurrence wheredioted energy using ambient air
temperature and sol-air temperature vary; however, on 12/16 &M@ stibwn in Figure 5(b), there are peak periods
where there is an observable reduction in predicted energy generation dgieetd®V panel temperatures. These
observations suggest that the consideration of urban rooftop &meeis importanin understanding photovoltaic
yields of panels coincident with rooftops, especially in climates that are warm gortion of the year and for
buildings with highly absorptive roof surfaces.
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Figure 5 Hourly Results of Simulations Compared to MeasuremerEdonple Winter and Summer Weeks
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Daily Results

Cumulative daily energy production information was available for ea¢bray$-igure 6 contains daily information
from the second half of 2011 and the first half of 2012; theeefit constitutes an entire year of analysis. Days
where measured weather data was not available or there were errors in theedh®as yield datasets were
removed from this analysiFhe plots 6(a) and 6(b) show measured energy production on tilzerttal axis and
predictions of energy production on the vertical axis. The identity bnesach illustrate an ideal data distribution
where prediction matches reality perfectly. It can be seen that for allaggtiudays the agreement between
simulations and realitis strong as points are clustered about the identity lines. For the stad&tRV system, the
daily RMSE is 9.3% of the daily average production of 21.72 kWie. RMSE of the residential system predictions
is 9.4% of the daily average production of 23.22 kWh. The greatestis observed on partially cloudy days where
the Perez sky model is unable to resolve the position of clouds ikytiiased solely on measured global horizontal
irradiation.

50

Simulated Daily Energy Production (kWh)
Simulated Daily Energy Production (kWh)
o
[=]

I

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40

Measured Daily Energy Production (kWh) Measured Daily Energy Production (kWh)
(a) Student Center (b) Residence

Figure 6 Measured vs Simulated Daily PV Energy Production
Annual Results

Annually the student center simulations predicted 3.6% less energy prodtitio was measured (6365.7 kWh
measured, 6136.5 kWh simulate@he residential system predicted 5.3% less energy production than was measured
(5154.6 kWh measured, 4881.3 kWh simulated). To help camtize the meaning of these numbers, predictions
were made for each system using a complete set of measured irradiatidengperature datkiom the same
weather station for 2008, 2009, 2010 and 2011. The maximasiance in predicted production between the four
years was 5.19% and 5.82% for the student center and residéhtigistems respectively. This suggests that the
predicted annual error using the new method presented in this paper aratazhlieather data is less than variance
which can be expected from climactic differences between years.

M ethodological Comparison — Two Cambridge Rooftops

In the previous section it was demonstrated that the new method is acdthiate3\6 to 5.3 percent annually when
compared to measured data and calibrating for actual weather. Since the predattiodsnreviewed in the
introduction cannot accommodate measured weather data as input, this sectiaresainmpulation results from the
new method for the two Cambridge rooftop systems to the calculatitimodologies reviewed in the introduction
The methods used in the comparison are PVWatts, Solar Analyst,angiansolar constant methodology. In all
cases, the closest possible geometric models were used. Using PVWatts, the@xattic parameters of each PV
array were input into the program. Hesti’s Solar Analyst and r.sun, a highly detailed DEM was created based on a
point sampling of the geometric models pictured in Figure 4 eveBbQrieters. Furthermore, we assume that all
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methods have perfect knowledge as to the area of the installed PV panelsshdarethe solar constant method
and any which assume that a building’s roof is flat, this assumption is not actually true. As documented in Table 3,
the student center PV array is nearly flat, with a panel tilt of 5 degbeethe other hand, the residential PV array is
tilted at a 50 degree angle; therefore, comparisons using flat smofipons were added for the residential system
in order to illustrate the importance of geometry in city-s€Afgpotential modeling. The flat roof calculations use
perfectly flat roofs which do not accurately represent actual roompngtry; however, they do include urban
context. Our new method uses typical meteorological data (United States Departrigmrgyf 2012 for this
comparison as discussed in the methodology section. The Solar Analysateaisuherein use the Esri-defined
default ratio between direct and diffuse radiation. As is common in thergaviewed literature, r.sun calculations
use a standard Linke turbidity factor for urban environmehishwaries monthlyHofierka, Suri and Huld2013.
Raster image representations of beam and diffuse clear sky iSdsxafd Hofierka 2004) were created by
comparing monthly averages of global horizontal beam and diffuse sitgaradiation calculated by r.sun with
average measured values from the Boston weather file (US Departniemrgly 2012). These raster images were
used as inputs to r.sun in order to account for realistic sky condilibesralues of clear sky index must be between
zero and one. For Cambridge, computed beam clear sky indicesuorranged between 0.47 to 0.57; however,
computed diffuse clear sky indices ranged between 1.29 to 1.72. Tdless greater than one are forced to one
which results in r.sun underestimating the diffuse componemtadtion present in Cambridge.

Figure 7 illustrates monthly comparisons of the predicted energy yiehts the various calculation methodologies
described previously. 7(a) shows results for the student centsys®®m, and 7(b) shows results for the residential
PV system. The red line indicates the calculations of our new model,hangdirtk padding around that line
illustrates the monthly RMSE of each system when they were compared garetedata in the previous section.
For the student center and residential systems, the monthly RMSEs ednipaneasured data are 7.25 and 5.65
percent respectively. Table 4 presents annual PV electrical yields, monthlybmasagteviation (MBD) monthly
rootmeansquare deviation (RMSD), and unbiased monthly RMSD for each existrthodology compared to the
new method. Monthly unbiased RMSD accounts for the mean mantiolyby forcing the MBD to be zero

Because the new method has been validated specifically for these two geonmétsitscand PV systems, the best
performing models from research and practice will approximate the sollthesdvhich represent the new method
in Figure 7. PVWatts (blue line), which has been validated against measiee(Cameron, Boyson, and Riley
2008, produces results very close to those of the new method fosystms. The notable exception to this is that
PVWatts calculates greater summer PV vyield for the student center systeme (Kg)), which suggests that the
PVWatts algorithms do not account for the potential excess heatiRYy glanels when they are installed on dark
urban rooftops. This assertion is corroborated by the close agrebeteeen PVWatts and the new method for the
residential system (Figure 7(b)), which has a lightly colored roof ahpaRels that are less affected by temperature
(Table 3). As explored earlier, PVWatts does not have the capacity to afmourtan surroundings, so it performs
well when modeling systems without many obstructions as in thesexavopées, but it would not be able to
accurately model rooftop systems which are shaded by nearby titeg@tdings or advise against such systems in an
urban PV potential modeling exercise. R.sun (purple line) also closely$otlee predictions of the new model in
the nearly flat-roofed context of the student center system. Maingxmethods (besides the solar constant and
Solar Analyst) predict greater summertime yields for the student centemsyigedy because they do not account
for high enough summer rooftop temperatuiidse results obtained by using Solar Analyst (green line) predict far
less electrical yield than other models for both PV systems during the weselting in MBD values between -6.2
and -25.0 percent. For the residential system with its sloped rsaf) predicts less energy production in the
summer than during the winter argbults in a nearly constant monthly energy rate. It thereforerymedicts the
PV potential of the sloped roof with a MBD of -22.9%. Ruiz-Arias e{2009) validated r.sun against measured
estimates of global horizontal irradiation which agrees with results showigune 7(a); however, r.sun seems to
predict significantly less irradiation than other models under certain stopédonditions. The flat roof methods
(dashed lines) applied to the residential system (Figure 7(b)) correlate apdgtaiing similar monthly energy
yields with the exception of Solar Analyst which again predicts significdesly yield during the winter. As the
solar constant (grey line) method does not have any built-ifanésms to track climactic trends, it performs the
worst in the case of a flat roof system with a RMSD of 34.3 peraadtjt performs artificially well in the case the
peaked residential roof which has a more uniform yield profile thrmutghe year.
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Figure 7 Monthly Comparison of Typical Energy Prediction Methods

Table 4 Typical Annual Results and Percent Errors Compared to DetailedNDR¥¢Ehod

CALCULATION MODEL ANNUAL PV YIELD| MONTHLY MBD MONTHLY RMSD | UNBIASED RMSD
(kwh) (%) (%) (%)
Student Center PV System
New method 9,041 -- -- --
PVWatts 9,806 8.5 11.4 7.6
Solar Analyst 8,477 -6.2 23.9 23.0
r.sun 9,571 5.9 8.4 6.0
Solar Constant 10,140 12.2 34.3 321
Residential PV System
New method 8,447 -- -- --
New Method (Flat Roof) 7,527 -10.9 20.9 17.8
PVWatts 8,932 5.7 8.9 6.8
PVWatts (Flat Roof) 7,601 -10.0 21.9 19.4
Solar Analyst 6,486 -23.2 27.4 145
Solar Analyst (Flat Roof) 6,334 -25.0 38.3 29.0
r.sun 6,611 -22.9 24.4 14.8
r.sun (Flat Roof) 6,717 -20.5 26.6 17.0
Solar Constant 7,752 -8.2 19.7 17.9

M ethodological Comparison — Urban Context

The previous section compared differ\ yield prediction methods for two Cambridge rooftop systemsrdier

to provide the reader with a more comprehensive feeling as to what tiffesendes mean for a city-wide PV
potentid map, the analysis is expanded to ten randomly selected buildings, whiekerpthe overall building
stock of Cambridge. Of these ten buildings, five can be descabéthving flat roofs; however, they often have
HVAC equipment and other obstructions present on the roof such tlyaarenot truly flat. The other five have
roofs of some complexity with at least one ridge line. These test buildieghawn in Figure .8The new method is
compared to the existing Solar Analyst, r.sun, flat roof and consafré methods. PVWatts is not included in this
section because it is a web-service relying upon manual user Agptite Solar Analyst, r.sun and constant value
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methods cannot account for rooftop temperatures or hourly alsitaple 18.5% panel efficiency is assumed for all
energy yield calculations in this comparison.
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Figure 8 Ten Test Buildings Used in Comparing Results

Table 5 compares annual irradiation predictions using existing methods fatfsim-based new methddean
irradiation across all points, MBD and RMSD are reported in total and forgeachetric type of rooftop identified

in Figure 8. In Cambridge, an unobstructed flat roof receives appatelyn1394 kWh/myr of solar irradiation
(United States Department of Energ912; however, as noted previouslyven ‘flat-roofed” buildings are not
without obstructions. It is reasonable to wonder how irradiation calcusatany between the methods and common
assumptions documented in this paper. The flat roof assumption hastigepbims of 26.2% (MBD) when
compared to irradiation calculations which consider actual rooftop geometrygoldr constant method has an even
larger bias of 30.3% because it does not account for the urban shadiegt cbhese numbers alone suggest that
proper representation of geometry is extremely important even in ssufae irradiation calculations, and any
rooftop PV potential mapping effort which assumes that all buildings in tleao# flat will have obvious
inaccuraciesCompared to Daysim’s calculations, Solar Analyst and r.sun underestimate annual irradiation with
-7.8% and -12.7% MBD respectivelPne possible reason for this is that Solar Analyst neglects the reflected
component of irradiation (Fu and Rid999. On the other hand, r.sun is likely to have an inflated reflected
component because it is based solely on view factor, global htaizoadiation and ground albedo and does not
account for shaded portions of the urban contéti @nd Hofierka2004); however, as noted previously its model
neglects significant percentages of diffuse irradiation.

The large RMSD of the comparison suggests that effects other thatatiaicbias are at work, and this can be
explained by the geometric quality of the simulation models at building eigese 9 shows aerial photographs
and planar projections of the predicted irradiation for a single buildimgy ukfferent methods which is typical
across the ten test buildings. In the process of creating a 3D maalelitgf we use building polyline information
from GIS databases to create extra points which improve the model resolutieneaige of buildings. As Solar
Analyst and r.sun work across a pure DEM which does not differebiteeen building and ground, the calculated
slope at edge pixels is often extreme and can lead to errors as seen ppehedge pixels in Figure 9 (Solar
Analyst). Such errors will increase as the ratio of building perimefgatoarea increases; however, this effect may
be mitigated by considering building-code mandates of roof edge offsd?¥/fsystems that are not included in this
study.

Table 5 Predicted IrradiatialBD and RMSD Compared to Daysim-based Calculations

Method Mean Mean [MeanlIrrad] MBD MBD MBD RMSD RMSD RMSD
kl\/r\/r k?/(rirF ' rkr\i/a\?ﬁ/ﬁl]zal im‘?:ﬁzx Total Flat Complex | Total Flat Conc;plex
Daysim 1070.0 1130.0 942.2 -- - -- -- -- -
Solar Analys 986.6 1049.0 853.5 -7.8 -7.2 9.4 31.7 32.4 29.1
r.sun 934.0 987.6 820.0 -12.7 -12.6 -13.0 36.3 35.2 38.7
Flat roof 1350.1 1362.0 1324.0 26.2 20.6 40.5 45.8 40.4 58.8
Constant 1394.0 1394.0 1394.0 30.3 23.4 48.0 49.7 43.2 65.3
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Figure 9 Resulting Point Irradiation Maps For Varying Calculation Mitho

It is useful to further qualify this data into PV electrical yields. A simpliégdation of annual irradiation (kWh?m
yr) multiplied by panel efficiency (18.5%) and ar@e) is used to calculate the potential electrical yield for 1
section. It therefore constitutes a way to compare the ability of differeshtlmto provide decision-making suppc
when considering installing new PV installations. Keeping with earlievarttions, methods using flat roc
assumptions are computed against actual roof areas, although in practieeutdisiot be the case. Using the nt
method, a PV yield 02,539 MWh/yr was predicted across all rooftops with a combih@®49 nf of useful roof
area. Comparatively, the Solar Analyst method predict8@I®IWh/yr across 11,041 frof useful roof area, an
r.sun prediatd 2,183MWH/yr with 11,967 m’ of useful roof area. Methods which cannot represent geometry
roof, constant value) predict that nearly all rooftop area is acceptali®/fmstallation and have similar increas
in predicted installation cost. This is documented in Table 6 below which disjot@y PV production determine
to be economically useful, the related installation area and predicted installationFaosthis study and for thes
ten buildings, flat roof assumptions lead to an inability to differentiate deetvguitable and unsuitable areas
potential PV installations. The r.sun method, while predicting less ovafglréduction, also concluded that mo
rooftop areas are useful for PV installations. If such predictions leacttal PV installations, this would result
installation cost increases between 9 a8gercent compared to the new method. In reality these increases
be even larger with the hourly rooftop temperature calculations furtkdeicing PV yield predictions of the ne
method.

Table 6 Simple Annual PV Production, Roof Area and InstallationsCos

M ethod PV Production Useful Roof Area Installed Cost
(MWh/yr) (m?) (millions USD)
New method 2,539 10,949 11.49
Solar Analyst 2,301 11,041 11.59
r.sun 2,183 11,967 12.56
Flat roof 3,323 13,279 13.94
Constant value 3,439 13,336 14.00

To underscore the importance of rooftop geometric accukagyre 10 shows an irradiation map of an urban area in
Cambridge with detailed roofs and with assumed flat roofs; each idisgglays detailed irradiation calculations of
the area using the cumulative sky method (Robinson and Stone. Z0t&)cumulative sky method uses the
Radiance reverse raytracer, but under a sky dome which accouttte fwlar radiation of every hour in the year.
Such a result therefore represents the overall radiation on a surface accdontgepmetry, shading and
reflections; however, it is not able to resolve hourly temporal informatiom Figure 10, it is clearly visible that a
flat roof assumption is going to create extreme differences in the rekhilisis because roof slope will change the
angle of incident radiation as well as the percent and portion of visibleQslgrall, the flat roof assumption
overestimates available radiation as there are no roof surfaces that slope to theonarththere any surfaces that
face surrounding buildings; all surfaces are oriented upwards totrerdgpen sky above the building. Further, it is
impossible for HVAC equipment or roof projections to shade anothdiopoof the roof. The effects of roof
orientation in the ten test cases are higher than the effects of inteéngpusifchding for a city of predominantly low-
rise buildings such as Cambridge.
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(a) City with Detailed Roof Models (b) City with Flat Roofs

Figure 10 Annual Irradiation Maps (Cumulative Sky Method) foryifegy Degrees of Geometric Accuracy

The new climate-based method of calculating photovoltaic potential constitetéssthtime that city-level GIS
datasets and geometric LIDAR information have been linked to a state of the aatedatidylight simulation tool
capable of modeling the effects of shading, reflections and climate-basdyg éffects. Such an approach offers
exciting opportunities which point towards a new generation of sustainmban analysis where detailed GIS
databases are translated into equally detailed environmental analyses. The oesdtefr analyses can then be fed
directly back into the GIS models or a display framework to serve as desijmaick for policy and decision makers
as well as property owners. As a further proof of concept, the auttidneed with Modern Development Studio, a
Boston based architecture and design firm and the City of Cambridggptaydresults on top of a searchable map
document using the Google Maps API, a screenshot of which isnshiowigure 11. The online version of the
Cambridge Solar Map is available vlitp://www.cambridgema.gov/solarThe map displays the calculated
information spatially to map users across their rooftop. Users arpralsented with fiscal information in terms of
economic impacts, NP\simple payback periods and local rebate incentives. In this waginoguowners and
curious users can engage with the map through the ability tofidéméiir roof specifically and notice how its
unique form produces varied suitability for photovoltaic installations. Uskithe map therefore feel like the
simulation results are personalized to their building. The authors believie iimportant to produce confidence in
the results and to increase interest in the goals of the map.

Assumptions

R Torms of Use

How to read the Report

Figure 11 Public Rooftop Photovoltaic Potential Map of Cambridge, MA{Mrsion)
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To communicate photovoltaic potential effectively, it is necessary to provifld usial output that aids in the
understanding of the data. The simulated rooftop solar potential fobi@ie was accordingly divided into four
bins meant to rank the relative predicted performance of a PV panel installedpatithat he thresholds are based
on the previously calculated 121 kWH/@1.25 kWh/ff) energy yield for a ten year NPV payback and were
calculated such that 15% of the roof aréahe city is considered to be ‘Excellent.” The four bins are defined as
follows,

. N/A < 1210 kWh/nf-yr (11.3 KWh/ff-yr)
e 121.0 (11.3 kWh/ftyr) < Poor < 165.0 kWh/fayr (15.3 kKWh/ft-yr)
e 165.0 (15.3 kWh/ftyr) < Good < 219.0 KWh/rf-yr (20.4 KWh/fe-yr)
e 219.0 kWh/mi-yr (20.4 KWh/ft-yr) < Excellent

Admittedly, the detailed climate-based method takes more time and processergt@aeshieve when compared to
generating a model using the flat roof assumption, PVWatts, Solar Apnalystin For this study, each building in

the city took approximately three hours of simulation time using comprehensive model of Cambridge. This
model was approximately eighteen square kilometers fy and contained 16,547,790 triangular surfaces. Later
studies tested tiling the model in one kilometer grid cells. With this reduoddlrsize of approximately one million
triangular surfaces per grid, buildings took five minutes on averagentalate. The simulations can also be run
fully in parallel to increase calculation speed. The solar constant methothiggameous, and PVWatts relies upon
external processing poweksri’s Solar Analyst tool and r.sun are also substantially faster; therefore the reader
should ask, what benefits can be expected from using this newedflethe previously demonstrated increase in
predictive accuracy is only part of the answer to such a query.

In the authorsopinion there is equally increased valunehaving a full3D model ofa city. Foremost, detailed
rooftop area information is available for quantifying useful rooftop anehthe total incident irradiation (kwh) used
in the energy generation equatiofsich a model also provides opportunities to investigate wall mountedridV,
subsets of the model can easily be extracted to support furthesiaralydesign teams or government entities that
make policy. Solar installers may also benefit from having three-diowad data for analysis in lieu of a site visit.
Figure 10 illustrates the utility of this model in analyzing the sadaential of building wallslt shows that building
walls annually receive between 200 and 1,200 kV¥yinof solar irradiation. Using a simple calculation of an
efficiency factor- 18.5%— multiplied by irradiation, results in predicted photovoltaic energy produofitetween
37 and 222 kWh/fyr. This means that some exposed building walls have the capacity of being ranked ‘good’ or
‘excellent” for potential PV installations by the above criteria. Using the validated Daysim softwaredpso
additional confidence in the simulation results as it considers typical climate-wasdier information, shading
and reflections. As discussed, Daysim also provides access to balgthated irradiation data which facilitates the
use of detailed equations of PV yield that consider hourly temperature presli@iach hourly data can be used in
policy analysis applications to help offset the peak loads of specific citess ar building types. For building
owners who have a demand pricing arrangement, hourly predictive data ig@lgspeseful in reducing annual
electricity costs. Demand pricing is an arrangement with an energiderovhere the pricing structure foreth
entire year is determined based on peak usage. In such cases, it er@@s$osoptimize PV panel placement
specifically for peak reduction using hourly or sub-hourly data.

Limitations of New M ethod

Beyond what was discussed previously, the new method has sevetatidims. Currently all PV panels are
modeled as coincident with the roof; however, it is often the case thatdtatrbuildings have PV panels installed
at a 45 degree tilt towards the South using standardized angle brackets.sblaumaps should therefore consider
an additional visualization layer with new simulation data analyzing potentidbyiitaic installations tilted
towards the South in this manner. Further, while the method predeasonably accurate roof forms, it should be
noted that LIDAR data and our point-simplifying method introdeirers in some building#\ newer version of the
map being produced uses finer resampling of the LIDAR data whialitses significant improvements in
geometric accuracy.

Others (Jochem et a2009 Levinson et al. 2009 anbuka¢ et al. 2012 have modeled the light passing through
vegetation by using either fixed transmissivity percentages for thetateg@ components ai DEM or through
time-varying methods which account for the seasonality of leaf tgenathile our model does not currently
implement such analysis, the Daysim software is capable of moditiegvarying object transmissivity by
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changing physically-based material definitions during different times oy¢he One limitation to implementing
this over a large urban area such as a city or region is that exBtglatasets rarely differentiate between
deciduous and evergreen trekska¢ et al. further note that surveying such information is only possiblestioall
study regions. As GIS databases and remote sensing improve, madelintyee explicitly will become possible.

CONCLUSION AND OUTLOOK

We have found that using a detailed Daysim reverse raytracing simuddtihe scale of the city is feasible and
produces reliable results. The new method employs detailed sky modelohasedsured climate datonsiders
reflections from the urban surroundings and includes an haoadftop temperature model. The capability of
Daysim to accurately predict urban irradiat@end the presented method to transform that irradiation into accurate
PV energy yields is confirmed laystrong agreement between simulated and measured energy productiorP&t tw
installations in Cambridge where annual errors ranged from 3.6-F13%oerror range was found to be smaller than
variations in predicted electricity generation between separate years frorroZm8.

Energy production predicted using the new metisoofften less than currently available maps would calculate for
equivalenttheoretical PV systems due to the urban rooftop temperature-based efficiedely Avalidation stug

of a system located on the MIT student center building comparing pasely oincident with a roof surface
suggests an average decreiasenergy generation of 18.3% during the sunlit hours of a hotnsnrweek through
this effect and a peak decrease of 36.7% when the panel temperaigreis.

To validate irradiation models and predictions of photovoltaic energy geneaatiba urban scale is a new effort.
We believe that in the future, such models will support policy decisisritbey allow the ability to predict hourly
peak-load reduction at the scale of a city or among a group ldfrigs whereas previous methods have not had this
benefit. With increased model quality and certainty about results thdtecaat least partially- visually assessed,
the authors aim to increase public engagement with sustainable technologies
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